Model specification for nonlinearity and heterogeneity of regression in randomized pretest posttest studies: Practical solutions for missing data.

2020 ◽  
Author(s):  
Samantha F. Anderson
Author(s):  
Karla DiazOrdaz ◽  
Richard Grieve

Health economic evaluations face the issues of noncompliance and missing data. Here, noncompliance is defined as non-adherence to a specific treatment, and occurs within randomized controlled trials (RCTs) when participants depart from their random assignment. Missing data arises if, for example, there is loss-to-follow-up, survey non-response, or the information available from routine data sources is incomplete. Appropriate statistical methods for handling noncompliance and missing data have been developed, but they have rarely been applied in health economics studies. Here, we illustrate the issues and outline some of the appropriate methods with which to handle these with application to health economic evaluation that uses data from an RCT. In an RCT the random assignment can be used as an instrument-for-treatment receipt, to obtain consistent estimates of the complier average causal effect, provided the underlying assumptions are met. Instrumental variable methods can accommodate essential features of the health economic context such as the correlation between individuals’ costs and outcomes in cost-effectiveness studies. Methodological guidance for handling missing data encourages approaches such as multiple imputation or inverse probability weighting, which assume the data are Missing At Random, but also sensitivity analyses that recognize the data may be missing according to the true, unobserved values, that is, Missing Not at Random. Future studies should subject the assumptions behind methods for handling noncompliance and missing data to thorough sensitivity analyses. Modern machine-learning methods can help reduce reliance on correct model specification. Further research is required to develop flexible methods for handling more complex forms of noncompliance and missing data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mathew V. Kiang ◽  
Jarvis T. Chen ◽  
Nancy Krieger ◽  
Caroline O. Buckee ◽  
Monica J. Alexander ◽  
...  

AbstractThe ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphones for “digital phenotyping,” the collection and analysis of raw phone sensor and log data to study the lived experiences of subjects in their natural environments using their own devices. While digital phenotyping has shown promise in fields such as psychiatry and neuroscience, there are fundamental gaps in our knowledge about data collection and non-collection (i.e., missing data) in smartphone-based digital phenotyping. In this meta-study using individual-level data from six different studies, we examined accelerometer and GPS sensor data of 211 participants, amounting to 29,500 person-days of observation, using Bayesian hierarchical negative binomial regression with study- and user-level random intercepts. Sensitivity analyses including alternative model specification and stratified models were conducted. We found that iOS users had lower GPS non-collection than Android users. For GPS data, rates of non-collection did not differ by race/ethnicity, education, age, or gender. For accelerometer data, Black participants had higher rates of non-collection, but rates did not differ by sex, education, or age. For both sensors, non-collection increased by 0.5% to 0.9% per week. These results demonstrate the feasibility of using smartphone-based digital phenotyping across diverse populations, for extended periods of time, and within diverse cohorts. As smartphones become increasingly embedded in everyday life, the insights of this study will help guide the design, planning, and analysis of digital phenotyping studies.


Methodology ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 138-152 ◽  
Author(s):  
Hsien-Yuan Hsu ◽  
Susan Troncoso Skidmore ◽  
Yan Li ◽  
Bruce Thompson

The purpose of the present paper was to evaluate the effect of constraining near-zero parameter cross-loadings to zero in the measurement component of a structural equation model. A Monte Carlo 3 × 5 × 2 simulation design was conducted (i.e., sample sizes of 200, 600, and 1,000; parameter cross-loadings of 0.07, 0.10, 0.13, 0.16, and 0.19 misspecified to be zero; and parameter path coefficients in the structural model of either 0.50 or 0.70). Results indicated that factor pattern coefficients and factor covariances were overestimated in measurement models when near-zero parameter cross-loadings constrained to zero were higher than 0.13 in the population. Moreover, the path coefficients between factors were misestimated when the near-zero parameter cross-loadings constrained to zero were noteworthy. Our results add to the literature detailing the importance of testing individual model specification decisions, and not simply evaluating omnibus model fit statistics.


1979 ◽  
Vol 24 (8) ◽  
pp. 670-670
Author(s):  
FRANZ R. EPTING ◽  
ALVIN W. LANDFIELD
Keyword(s):  

1979 ◽  
Vol 24 (12) ◽  
pp. 1058-1058
Author(s):  
AL LANDFIELD ◽  
FRANZ EPTING
Keyword(s):  

2013 ◽  
Author(s):  
Samantha Minski ◽  
Kristen Medina ◽  
Danielle Lespinasse ◽  
Stacey Maurer ◽  
Manal Alabduljabbar ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document