scholarly journals Physico-Chemical Properties of Nucleic Acids

Nature ◽  
1950 ◽  
Vol 166 (4213) ◽  
pp. 170-172
Author(s):  
D. O. JORDAN
Author(s):  
A.-C. Dock-Bregeon ◽  
D. Moras

At first glance crystallizing nucleic acids poses the same problems as crystallizing proteins since most of the variables to investigate are alike. It is thus astonishing that crystallization data banks (1) that describe so many successful protein crystallizations are so poor in information on nucleic acids. This relies on the physico-chemical and biochemical characteristics of nucleic acids distinguishing them from proteins. The aim of this chapter is to underline features explaining the difficulties often encountered in nucleic acid crystallization and to discuss strategies that could help to crystallize them more readily, either as free molecules or as complexes with proteins. Other general principles, in particular for RNA crystallization, are discussed in ref. 2. Among natural nucleic acids only the smaller ones provide good candidates for successful crystallizations. Large DNAs or RNAs can a priori be excluded because of their flexibility that generates conformational heterogeneity not compatible with crystallization. Thus the smaller RNAs with more compact structures (with 75-120 nt), especially transfer RNAs (tRNAs), but also 5S RNA, were the first natural nucleic acids to be crystallized (3, 4). At present attempts are being made with other RNA systems, such as ribozymes and introns, fragments of mRNA, viroids, viral and other tRNA-like RNAs, SELEX-evolved RNAs, and crystallization successes leading to X-ray structure determinations were reported for RNA domains of up to 160 nt long, with the resolution of the P4-P6 domain of the self-splicing Tetrahymena intron (5). The recent excitement in nucleic acid crystallography, and particularly in RNA crystallography, have partly been due to technological improvements in the preparation methods of the molecules. Advances in oligonucleotide chemical synthesis provide opportunity for making large amounts of pure desoxyribo- and more recently of ribo-oligomers of any desired sequence. This led to the crystallization of a number of DNA and RNA fragments and was followed by the co-crystallization of complexes between proteins and such synthetic fragments. Transcription methods of RNAs from synthetic DNA templates were also essential for rejuvenating the structural biology of RNAs. In the case of complexes of proteins with RNAs, the main difficulty was to purify large quantities of homogeneous biological material with well defined physico-chemical properties.


1950 ◽  
Vol 46 ◽  
pp. 790 ◽  
Author(s):  
V. Desreux ◽  
R. Signer ◽  
H. Schwander ◽  
A. G. Ogston ◽  
S. Furberg ◽  
...  

Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


Sign in / Sign up

Export Citation Format

Share Document