Single-channel currents recorded from membrane of denervated frog muscle fibres

Nature ◽  
1976 ◽  
Vol 260 (5554) ◽  
pp. 799-802 ◽  
Author(s):  
ERWIN NEHER ◽  
BERT SAKMANN
1985 ◽  
Vol 225 (1240) ◽  
pp. 329-355 ◽  

Three nicotinic agonists, suberyldicholine, acetylcholine and carbachol, have been investigated by single channel recording at the endplates of adult frog muscle fibres. All three agonists can block the channels that they open. Suberyldicholine is the most potent blocker; it has an equilibrium constant for binding to the open channel of about 6 μM and blockages last for about 5 ms on average, at —105 mV. A plot of the mean number of blockages per unit open time against concentration (‘blockage frequency plot’) suggests that suberyldicholine does not produce long-lived blocked states such as might occur, for example, if it could be trapped within a shut channel. The characteristics of the 'blockage frequency plot’ are analysed in Appendix 2. Block by acetylcholine and carbachol has much lower affinity (the equilibrium constants being a few millimolar for both), and blockages are much briefer, so that blockage appears to produce noisy single channel currents of reduced amplitude. A method based on the spectral density of the excess ‘open’ channel noise has been used to investigate the rate of blocking and unblocking. The basis of this method is discussed in Appendix 1. It is estimated that the mean duration of a blockage is about 18 μs for acetylcholine and 9 μs for carbachol.


1991 ◽  
Vol 161 (1) ◽  
pp. 455-468
Author(s):  
F. ZUFALL ◽  
H. HATT ◽  
T. A. KEIL

Single-channel patch-clamp techniques were used to identify and characterize a Ca2+-activated nonspecific cation channel (CAN channel) on insect olfactory receptor neurones (ORNs) from antennae of male Antheraea polyphemus. The CAN channel was found both in acutely isolated ORNs from developing pupae and in membrane vesicles from mature ORNs that presumably originated from inner dendritic segments. Amplitude histograms of the CAN single-channel currents presented well-defined peaks corresponding to at least four channel substates each having a conductance of about 16 pS. Simultaneous gating of the substates was achieved by intracellular Ca2+ with an EC50 value of about 80 nmoll−1. Activity of the CAN channel could be blocked by application of amiloride (IC50 <100nmoll−1). Moreover, in the presence of 1μmoll−1 Ca2+, opening of the CAN channel was totally suppressed by 10 μmoll−1 cyclic GMP, whereas ATP (1 mmol l−1) was without effect. We suggest that the CAN channel plays a specific role in modulation of cell excitability and in shaping the voltage response of ORNs.


Sign in / Sign up

Export Citation Format

Share Document