Interstellar extinction in the Large Magellanic Cloud

Nature ◽  
1980 ◽  
Vol 283 (5749) ◽  
pp. 725-729 ◽  
Author(s):  
K. Nandy ◽  
D. H. Morgan ◽  
A. J. Willis ◽  
R. Wilson ◽  
P. M. Gondhalekar ◽  
...  
1991 ◽  
Vol 148 ◽  
pp. 69-70
Author(s):  
J. Koornneef

We introduce an as yet unpublished set of OAO-II observations of stellar associations in the Large Magellanic Cloud (LMC). Cross-correlation of the photometric characteristics of these fields with the infrared fluxes at these same positions obtained by the IRAS satellite provides information on the local stellar population, the amounts of interstellar extinction and thermal dust emission.


1981 ◽  
Vol 196 (4) ◽  
pp. 955-966 ◽  
Author(s):  
K. Nandy ◽  
D. H. Morgan ◽  
A. J. Willis ◽  
R. Wilson ◽  
P. M. Gondhalekar

2019 ◽  
Vol 488 (1) ◽  
pp. 1090-1110 ◽  
Author(s):  
C A H Condori ◽  
M Borges Fernandes ◽  
M Kraus ◽  
D Panoglou ◽  
C A Guerrero

ABSTRACT We investigated 12 unclassified B[e] stars or candidates, 8 from the Galaxy, 2 from the Large Magellanic Cloud (LMC), and 2 from the Small Magellanic Cloud (SMC). Based on the analysis of high-resolution spectroscopic (FEROS) and photometric data, we confirmed the presence of the B[e] phenomenon for all objects of our sample, except for one (IRAS 07455-3143). We derived their effective temperature, spectral type, luminosity class, interstellar extinction and, using the distances from Gaia DR2, we obtained their bolometric magnitude, luminosity, and radius. Modelling of the forbidden lines present in the FEROS spectra revealed information about the kinematics and geometry of the circumstellar medium of these objects. In addition, we analysed the light curves of four stars, finding their most probable periods. The evolutionary stage of 11 stars of our sample is suggested from their position on the HR diagram, taking into account evolutionary tracks of stars with solar, LMC, and SMC metallicities. As results, we identified B and B[e] supergiants, B[e] stars probably at the main sequence or close to its end, post-AGB and HAeB[e] candidates, and A[e] stars in the main sequence or in the pre-main sequence. However, our most remarkable results are the identification of the third A[e] supergiant (ARDB 54, the first one in the LMC), and of an ‘LBV impostor’ in the SMC (LHA 115-N82).


2012 ◽  
Vol 8 (S292) ◽  
pp. 286-286
Author(s):  
Jian Gao ◽  
Mengyao Xue ◽  
B. W. Jiang

AbstractThe mid-infrared (MIR) extinction law in the Large Magellanic Cloud (LMC) at four IRAC bands is derived using the data of the Spitzer/SAGE Program. The derived mean extinctions are A[3.6]/AKs = 0.68±0.03, A[4.5]/AKs = 0.97±0.03, A[5.8]/AKs = 0.54±0.04, and A[8.0]/AKs = 0.58±0.07. The results show that: (1) The extinctions at [3.6], [5.8] and [8.0] of the LMC consist a flat curve, similar to that of the Milky Way (MW) predicted by the interstellar grain model at Rv = 5.5; (2) The extinction at [4.5] is clearly higher than the other three bands, which may be caused by the additional absorption of the 4.27μm CO2 ice and/or the 4.67μm CO ice in the LMC molecular clouds; (3) As far as individual sightlines are concerned, the MIR interstellar extinction law Aλ/AKs in the LMC varies with sightlines as the MW does.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


Sign in / Sign up

Export Citation Format

Share Document