extinction curve
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 257 (2) ◽  
pp. 63
Author(s):  
Wenbo Zuo ◽  
Aigen Li ◽  
Gang Zhao

Abstract While it is well recognized that both the Galactic interstellar extinction curves and the gas-phase abundances of dust-forming elements exhibit considerable variations from one sight line to another, as yet most of the dust extinction modeling efforts have been directed to the Galactic average extinction curve, which is obtained by averaging over many clouds of different gas and dust properties. Therefore, any details concerning the relationship between the dust properties and the interstellar environments are lost. Here we utilize the wealth of extinction and elemental abundance data obtained by space telescopes and explore the dust properties of a large number of individual sight lines. We model the observed extinction curve of each sight line and derive the abundances of the major dust-forming elements (i.e., C, O, Si, Mg, and Fe) required to be tied up in dust (i.e., dust depletion). We then confront the derived dust depletions with the observed gas-phase abundances of these elements and investigate the environmental effects on the dust properties and elemental depletions. It is found that for the majority of the sight lines the interstellar oxygen atoms are fully accommodated by gas and dust and therefore there does not appear to be a “missing oxygen” problem. For those sight lines with an extinction-to-hydrogen column density A V /N H ≳ 4.8 × 10−22 mag cm2 H−1 there are shortages of C, Si, Mg, and Fe elements for making dust to account for the observed extinction, even if the interstellar C/H, Si/H, Mg/H, and Fe/H abundances are assumed to be protosolar abundances augmented by Galactic chemical evolution.


2021 ◽  
Vol 922 (1) ◽  
pp. 47
Author(s):  
Nguyen Chau Giang ◽  
Thiem Hoang

Abstract Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward far-ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a ≤ 0.1 μm in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to mid-infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a ≥ 0.1 μm are significantly disrupted to smaller sizes by RATD up to d RATD > 100 pc in the polar direction and d RATD ∼ 10 pc in the torus region. Consequently, optical–MIR extinction decreases, whereas FUV-near-ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to-selective visual extinction ratio thus significantly drops to R V < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of R V with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a ≤ 0.05 μm is the key for explaining the dichotomy observed “SMC” and “gray” extinction curve toward many AGN.


2021 ◽  
Author(s):  
John van der Velden ◽  
Rob White
Keyword(s):  

2020 ◽  
Vol 501 (1) ◽  
pp. 1336-1351
Author(s):  
Yu-Hsiu Huang ◽  
Hiroyuki Hirashita ◽  
Yun-Hsin Hsu ◽  
Yen-Ting Lin ◽  
Dylan Nelson ◽  
...  

ABSTRACT We model dust evolution in Milky Way-like galaxies by post-processing the IllustrisTNG cosmological hydrodynamical simulations in order to predict dust-to-gas ratios and grain size distributions. We treat grain-size-dependent dust growth and destruction processes using a 64-bin discrete grain size evolution model without spatially resolving each galaxy. Our model broadly reproduces the observed dust–metallicity scaling relation in nearby galaxies. The grain size distribution is dominated by large grains at z ≳ 3 and the small-grain abundance rapidly increases by shattering and accretion (dust growth) at z ≲ 2. The grain size distribution approaches the so-called MRN distribution at z ∼ 1, but a suppression of large-grain abundances occurs at z &lt; 1. Based on the computed grain size distributions and grain compositions, we also calculate the evolution of the extinction curve for each Milky Way analogue. Extinction curves are initially flat at z &gt; 2, and become consistent with the Milky Way extinction curve at z ≲ 1 at $1/\lambda \lt 6~\rm{\mu m}^{-1}$. However, typical extinction curves predicted by our model have a steeper slope at short wavelengths than is observed in the Milky Way. This is due to the low-redshift decline of gas-phase metallicity and the dense gas fraction in our TNG Milky Way analogues that suppresses the formation of large grains through coagulation.


2020 ◽  
pp. 327-340
Author(s):  
G. Mulas ◽  
G. Malloci ◽  
C. Joblin ◽  
C. Cecchi-Pestellini

2020 ◽  
pp. 327-340
Author(s):  
G. Mulas ◽  
G. Malloci ◽  
C. Joblin ◽  
C. Cecchi-Pestellini

2020 ◽  
Vol 641 ◽  
pp. A141
Author(s):  
F. Nogueras-Lara ◽  
R. Schödel ◽  
N. Neumayer ◽  
E. Gallego-Cano ◽  
B. Shahzamanian ◽  
...  

Context. The characterisation of the extinction curve in the near-infrared (NIR) is fundamental to analysing the structure and stellar population of the Galactic centre (GC), whose analysis is hampered by the extreme interstellar extinction (AV ~ 30 mag) that varies on arc-second scales. Recent studies indicate that the behaviour of the extinction curve might be more complex than previously assumed, pointing towards a variation of the extinction curve as a function of wavelength. Aims. We aim to analyse the variations of the extinction index, α, with wavelength, line-of-sight, and absolute extinction, extending previous analyses to a larger area of the innermost regions of the Galaxy. Methods. We analysed the whole GALACTICNUCLEUS survey, a high-angular resolution (~0.2″) JHKs NIR survey specially designed to observe the GC in unprecedented detail. It covers a region of ~6000 pc2, comprising fields in the nuclear stellar disc, the inner bulge, and the transition region between them. We applied two independent methods based on red clump (RC) stars to constrain the extinction curve and analysed its variation superseding previous studies. Results. We used more than 165 000 RC stars and increased the size of the regions analysed significantly to confirm that the extinction curve varies with the wavelength. We estimated a difference Δα = 0.21 ± 0.07 between the obtained extinction indices, αJH = 2.44 ± 0.05 and αHKs = 2.23 ± 0.05. We also concluded that there is no significant variation of the extinction curve with wavelength, with the line-of-sight or the absolute extinction. Finally, we computed the ratios between extinctions, AJ∕AH = 1.87 ± 0.03 and AH/AKs = 1.84 ± 0.03, consistent with all the regions of the GALACTICNUCLEUS catalogue.


2020 ◽  
Vol 58 (1) ◽  
pp. 529-575 ◽  
Author(s):  
Samir Salim ◽  
Desika Narayanan

Understanding the properties of dust attenuation curves in galaxies and the physical mechanisms that shape them are among the fundamental questions of extragalactic astrophysics, with great practical significance for deriving the physical properties of galaxies. Attenuation curves result from a combination of dust grain properties, dust content, and the spatial arrangement of dust and different populations of stars. In this review, we assess the state of the field, paying particular attention to extinction curves as the building blocks of attenuation laws. We introduce a quantitative framework to characterize extinction and attenuation curves, present a theoretical foundation for interpreting empirical results, overview an array of observational methods, and review observational results at low and high redshifts. Our main conclusions include the following: ▪  Attenuation curves exhibit a wide range of UV-through-optical slopes, from curves with shallow (Milky Way–like) slopes to those exceeding the slope of the Small Magellanic Cloud extinction curve. ▪  The slopes of the curves correlate strongly with the effective optical opacities, in the sense that galaxies with lower dust column density (lower visual attenuation) tend to have steeper slopes, whereas the galaxies with higher dust column density have shallower (grayer) slopes. ▪  Galaxies exhibit a range of 2175-Å UV bump strengths, including no bump, but, on average, are suppressed compared with the average Milky Way extinction curve. ▪  Theoretical studies indicate that both the correlation between the slope and the dust column as well as variations in bump strength may result from geometric and radiative transfer effects.


2020 ◽  
Vol 494 (1) ◽  
pp. 1058-1070 ◽  
Author(s):  
Hiroyuki Hirashita ◽  
Thiem Hoang

ABSTRACT Interstellar dust grains can be spun up by radiative torques, and the resulting centrifugal force may be strong enough to disrupt large dust grains. We examine the effect of this rotational disruption on the evolution of grain size distribution in galaxies. To this goal, we modify our previous model by assuming that rotational disruption is the major small-grain production mechanism. We find that rotational disruption can have a large influence on the evolution of grain size distribution in the following two aspects especially for composites and grain mantles (with tensile strength ∼107   erg cm −3). First, because of the short time-scale of rotational disruption, the small-grain production occurs even in the early phase of galaxy evolution. Therefore, even though stars produce large grains, the abundance of small grains can be large enough to steepen the extinction curve. Secondly, rotational disruption is important in determining the maximum grain radius, which regulates the steepness of the extinction curve. For compact grains with tensile strength ≳109   erg cm −3, the size evolution is significantly affected by rotational disruption only if the radiation field is as strong as (or the dust temperature is as high as) expected for starburst galaxies. For compact grains, rotational disruption predicts that the maximum grain radius becomes less than 0.2 $\rm{\mu m}$ for galaxies with a dust temperature ≳50 K.


Sign in / Sign up

Export Citation Format

Share Document