Greater global warming revealed by satellite-derived sea-surface-temperature trends

Nature ◽  
1989 ◽  
Vol 338 (6217) ◽  
pp. 642-645 ◽  
Author(s):  
A. E. Strong
2016 ◽  
Vol 9 (4) ◽  
pp. 452 ◽  
Author(s):  
Saeed Samadianfard ◽  
Reza Delirhasannia ◽  
Masoud Torabi Azad ◽  
Sima Samadianfard ◽  
Mehrdad Jeihouni

2014 ◽  
Vol 27 (22) ◽  
pp. 8413-8421 ◽  
Author(s):  
Lei Zhang ◽  
Tim Li

Abstract How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. A dipole warming over the equatorial Indian Ocean is a response to weakened Walker circulation in the tropical Pacific.


2015 ◽  
Vol 300 ◽  
pp. 434-446 ◽  
Author(s):  
Carl L. Amos ◽  
S. Martino ◽  
T.F. Sutherland ◽  
T. Al Rashidi

2020 ◽  
Vol 20 (2) ◽  
pp. 129-141
Author(s):  
Tran Anh Tuan ◽  
Vu Hai Dang ◽  
Pham Viet Hong ◽  
Do Ngoc Thuc ◽  
Nguyen Thuy Linh ◽  
...  

In this article, the sea surface temperature trends and the influence of ENSO on the southwest sea of Vietnam were analyzed using the continuous satellite-acquired data sequence of SST in the period of 2002–2018. GIS and average statistical methods were applied to calculate the average monthly and seasonal sea surface temperature, the seasonal sea surface temperature anomalies for each year and for the whole study period. Subsequently, the changing trends of sea surface temperature in the northeast and southwest monsoon seasons were estimated using linear regression analysis. Research results indicated that the sea surface temperature changed significantly throughout the calendar year, in which the maximum and minimum sea surface temperature are 31oC in May and 26oC in January respectively. Sea surface temperature trends range from 0oC/year to 0.05oC/year during the Northeast monsoon season and from 0.025oC/year to 0.055oC/year during the southwest monsoon season. Results based on the Oceanic Niño Index (ONI) analysis also show that the sea surface temperature in the study area and adjacent areas is strongly influenced and significantly fluctuates during El Niño and La Niña episodes.


Sign in / Sign up

Export Citation Format

Share Document