scholarly journals A fresh look at paired-pulse facilitation

2001 ◽  
Vol 2 (5) ◽  
pp. 307-307 ◽  
Author(s):  
Juan Carlos López
1994 ◽  
Vol 72 (1) ◽  
pp. 326-336 ◽  
Author(s):  
M. Andreasen ◽  
J. J. Hablitz

1. Whole-cell patch-clamp recordings were used to study paired-pulse facilitation (PPF) of the lateral perforant path input to the dentate gyrus in thin hippocampal slices. 2. Orthodromic stimulation of the lateral perforant pathway evoked a excitatory postsynaptic current (EPSC) with a latency of 3.3 +/- 0.1 ms (mean +/- SE) that fluctuated in amplitude. The EPSC had a rise time (10-90%) of 2.79 +/- 0.06 ms (n = 35) and decayed with a single exponential time course with a time-constant of 9.14 +/- 0.24 ms (n = 35). No correlation was found between the amplitude of the EPSC and the rise time or decay time-constant. The non-N-methyl-D-aspartate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione completely blocked the EPSC whereas the NMDA antagonist D-aminophosphonovaleric acid (APV) had modest effects. 3. When a test (T-)EPSC was preceded at an interval of 100 ms by a conditioning (C-)EPSC, a significant increase in the amplitude of the T-EPSC was seen in 38 out of 44 trials analyzed from a total of 27 granule cells. The average amount of PPF was 35.7 +/- 2.1%. There was no apparent correlation between the amount of PPF and the stimulation intensity or mean amplitude of the C-EPSC. The time course of the facilitated T-EPSC was not significantly different from that of the C-EPSC. 4. No correlation was found between the amplitude of the C-EPSC and that of the T-EPSC. Estimates of quantal content (mcv) were determined by calculating the ratio of the squared averaged EPSC amplitude (from 48 responses) to the variance of these responses (M2/sigma 2) whereas quantal amplitudes (qcv) were estimated by calculating the ratio of the response variance to average EPSC amplitude (sigma 2/M). PPF was found to be associated with an average increase in mcv of 64.8 +/- 7.2% (n = 38) whereas qcv was decreased by 12.1 +/- 3.8%. 5. The time course of PPF was studied by varying the interval between the C- and T-pulse from 10 to 400 ms while keeping the stimulation intensity constant. Maximal facilitation of the T-EPSC was obtained with interpulse intervals < or = 25 ms where the average facilitation amounted to approximately 70% (n = 6). The decline of facilitation was nearly exponential and was no longer evident with intervals > 350 ms.(ABSTRACT TRUNCATED AT 400 WORDS


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112138 ◽  
Author(s):  
Ramón A. Piñol ◽  
Heather Jameson ◽  
Anastas Popratiloff ◽  
Norman H. Lee ◽  
David Mendelowitz

1995 ◽  
Vol 73 (5) ◽  
pp. 1821-1828 ◽  
Author(s):  
T. C. Dumas ◽  
T. C. Foster

1. We recorded extracellular and intracellular CA3-CA1 synaptic responses in hippocampal slices from neonatal rats [postnatal day (P) 15-21 and P29-35]. Presynaptic function was examined by measuring input-output relationships and paired-pulse facilitation and by quantal analysis of minimally evoked responses. 2. Extracellular recording revealed no difference in excitatory postsynaptic potential (EPSP) threshold or the fiber potential response for a given stimulus intensity between the two age groups. However, the slope of the field EPSP was consistently larger in older animals. The increase in EPSP slope was associated with a decrease in paired-pulse facilitation, suggesting an increase in presynaptic function with postnatal development. 3. Extracellular results were confirmed by intracellular recordings that revealed no difference in the minimal stimulation intensity needed to evoke a response, an increase in mean EPSP amplitude with development, and a decrease in paired-pulse facilitation. Quantal parameters were extracted by three separate methods including method of failures, coefficient of variance, and parameter optimization through noise deconvolution. All methods supported presynaptic mediation of facilitation. Comparison of quantal parameters during development indicated an increase in mean quantal content. 4. The results demonstrate that synaptic strength is altered over the course of development because of, at least in part, changes in presynaptic release mechanisms. Developmental differences in presynaptic function provide an explanation of differences in mechanisms for expression of long-term potentiation. The lower initial probability of transmitter release in neonates may permit increased presynaptic change.


Sign in / Sign up

Export Citation Format

Share Document