gabaergic neurotransmission
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 77)

H-INDEX

38
(FIVE YEARS 5)

2021 ◽  
Vol 14 ◽  
Author(s):  
Xin-Yi Chen ◽  
Lei Chen ◽  
Wu Yang ◽  
An-Mu Xie

The glucagon-like peptide-1 (GLP-1) plays important roles in the regulation of food intake and energy metabolism. Peripheral or central GLP-1 suppresses food intake and reduces body weight. The electrophysiological properties of neurons in the mammalian central nervous system reflect the neuronal excitability and the functional organization of the brain. Recent studies focus on elucidating GLP-1-induced suppression of feeding behaviors and modulation of neuronal electrophysiological properties in several brain regions. Here, we summarize that activation of GLP-1 receptor (GLP-1R) suppresses food intake and induces postsynaptic depolarization of membrane potential and/or presynaptic modulation of glutamatergic or GABAergic neurotransmission in brain nuclei located within the medulla oblongata, pons, mesencephalon, diencephalon, and telencephalon. This review may provide a background to guide future research about the cellular mechanisms of GLP-1-induced feeding inhibition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mira Hamze ◽  
Igor Medina ◽  
Quentin Delmotte ◽  
Christophe Porcher

In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.


2021 ◽  
Author(s):  
Konrad Platzer ◽  
Heinrich Sticht ◽  
Caleb Bupp ◽  
Mythily Ganapathi ◽  
Elaine M. Pereira ◽  
...  

We describe four patients with a neurodevelopmental disorder and de novo missense variants in SLC32A1, the gene that encodes the vesicular GABA transporter (VGAT). The main phenotype comprises moderate to severe intellectual disability, early onset epilepsy within the first 18 months of life and a choreatic, dystonic or dyskinetic movement disorder. In silico modeling and functional analyses in cultured neurons reveal that three of these variants, which are located in helices that line the putative GABA transport pathway, result in reduced quantal size, consistent with impaired filling of synaptic vesicles with GABA. The fourth variant, located in the VGAT N-terminus, does not affect quantal size, but increases presynaptic release probability, leading to more severe synaptic depression during high frequency stimulation. Thus, variants in VGAT can impair GABAergic neurotransmission via at least two mechanisms, by affecting synaptic vesicle filling and by altering synaptic short-term plasticity. This work establishes de novo missense variants in SLC32A1 as a novel cause for a neurodevelopmental disorder with epilepsy.


2021 ◽  
Vol 53 ◽  
pp. S199-S200
Author(s):  
P. Lukow ◽  
D. Martins ◽  
M. Veronese ◽  
P. McGuire ◽  
F.E. Turkheimer ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Roberto Canitano ◽  
Roberto Palumbi

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication abnormalities. Heterogeneity in the expression and severity of the core and associated symptoms poses difficulties in classification and the overall clinical approach. Synaptic abnormalities have been observed in preclinical ASD models. They are thought to play a major role in clinical functional abnormalities and might be modified by targeted interventions. An imbalance in excitatory to inhibitory neurotransmission (E/I imbalance), through altered glutamatergic and GABAergic neurotransmission, respectively, is thought to be implicated in the pathogenesis of ASD. Glutamatergic and GABAergic agents have been tested in clinical trials with encouraging results as to efficacy and tolerability. Further studies are needed to confirm the role of E/I modulators in the treatment of ASD and on the safety and efficacy of the current agents.


2021 ◽  
Author(s):  
Xiangning Xue ◽  
Wei Zong ◽  
Jill Glausier ◽  
Sam-Moon Kim ◽  
Micah Shelton ◽  
...  

Severe and persistent disruptions to sleep and circadian rhythms are common features of people with opioid use disorder (OUD). Preclinical findings suggest altered molecular rhythms in the brain are involved in opioid reward and dependence. However, whether molecular rhythms are disrupted in brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. We previously used subjects' times of death (TOD) as a marker of time of day to investigate transcriptional rhythm alterations in psychiatric disorders. Using TOD and RNA sequencing, we discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in opioid addiction, were largely distinct between OUD and unaffected comparison subjects. Further, fewer rhythmic transcripts were identified in DLPFC of OUD subjects compared to unaffected subjects, but nearly double the number of rhythmic transcripts were found in the NAc of OUD subjects. In OUD, rhythmic transcripts in the NAc peaked either in the evening or near sunrise, and were associated with dopamine, opioid, and GABAergic neurotransmission. Co-expression network analysis identified several OUD-specific modules in the NAc, enriched for transcripts involved in the modulation of dopamine and GABA synapses, including glutamatergic signaling and extracellular matrices. Integrative analyses with human GWAS revealed that rhythmic transcripts in DLPFC and NAc were enriched for genomic loci associated with sleep duration and insomnia. Overall, our results connect transcriptional rhythm changes in dopamine, opioid, and GABAergic synaptic signaling in human brain to sleep-related phenotypes and OUD.


2021 ◽  
Author(s):  
Sayani Banerjee ◽  
Chennu Manisha ◽  
Deepthi Murugan ◽  
Antony Justin

Gamma-amino butyric acid (GABA) is a major inhibitory neurotransmitter found in several regions of the brain and known to have various significant physiological roles as a potent bioactive compound. Malfunction of GABAergic neuronal signaling prompts to cause severe psychiatric symptoms in numerous mental disorders. Several drugs are available in clinical practice for neuropsychiatric disorders targeting through GABAergic pathway, with notable adverse effects. Interestingly, in recent years, researchers are focusing on natural compounds altering GABAergic neurotransmission for various psychiatric disorders due to its wide range of therapeutic efficacy and safety. The enormous variety of natural compounds, namely alkaloids, flavonoids, terpenoids, polyacetylenic alcohols, alkanes and fatty acids were reported to alter the GABAergic transmission through its receptors and or by influencing the transmission, synthesis and metabolism of GABA. Natural compounds are able to cross the blood brain barrier and influence the GABA functions in order to treat anxiety, mania, schizophrenia and cognitive disorders. Therefore, this current chapter describes on natural products which have the potential to alter the GABAergic neurotransmission and its therapeutical benefits in treating several neuropsychiatry disorders using various pharmacological methods.


Author(s):  
Georgios Michalettos ◽  
Helene L. Walter ◽  
Ana Rita Pombo Antunes ◽  
Tadeusz Wieloch ◽  
Daniela Talhada ◽  
...  

AbstractFollowing stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, β3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the β3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.


2021 ◽  
Vol 22 (16) ◽  
pp. 8899
Author(s):  
Marina Gabaglio ◽  
Erica Zamberletti ◽  
Cristina Manenti ◽  
Daniela Parolaro ◽  
Tiziana Rubino

Cannabis is the most-used recreational drug worldwide, with a high prevalence of use among adolescents. In animal models, long-term adverse effects were reported following chronic adolescent exposure to the main psychotomimetic component of the plant, delta-9-tetrahydrocannabinol (THC). However, these studies investigated the effects of pure THC, without taking into account other cannabinoids present in the cannabis plant. Interestingly, cannabidiol (CBD) content seems to mitigate some of the side effects of THC, at least in adult animals. Thus, in female rats, we evaluated the long-term consequences of a co-administration of THC and CBD at a 3:1 ratio, chosen based on the analysis of recently confiscated illegal cannabis samples in Europe. CBD content is able to mitigate some of the long-term behavioral alterations induced by adolescent THC exposure as well as long-term changes in CB1 receptor and microglia activation in the prefrontal cortex (PFC). We also investigated, for the first time, possible long-term effects of chronic administration of a THC/CBD combination reminiscent of “light cannabis” (CBD:THC in a 33:1 ratio; total THC 0.3%). Repeated administration of this CBD:THC combination has long-term adverse effects on cognition and leads to anhedonia. Concomitantly, it boosts Glutamic Acid Decarboxylase-67 (GAD67) levels in the PFC, suggesting a possible lasting effect on GABAergic neurotransmission.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucas Gomes-de-Souza ◽  
Willian Costa-Ferreira ◽  
Michelle M. Mendonça ◽  
Carlos H. Xavier ◽  
Carlos C. Crestani

AbstractThe endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.


Sign in / Sign up

Export Citation Format

Share Document