An RNA-export mediator with an essential nuclear export signal

Nature ◽  
1996 ◽  
Vol 383 (6598) ◽  
pp. 357-360 ◽  
Author(s):  
Robert Murphy ◽  
Susan R. Wente
2000 ◽  
Vol 20 (13) ◽  
pp. 4562-4571 ◽  
Author(s):  
Batool Ossareh-Nazari ◽  
Christèle Maison ◽  
Ben E. Black ◽  
Lyne Lévesque ◽  
Bryce M. Paschal ◽  
...  

ABSTRACT To better characterize the mechanisms responsible for RNA export from the nucleus, we developed an in vitro assay based on the use of permeabilized HeLa cells. This new assay supports nuclear export of U1 snRNA, tRNA, and mRNA in an energy- and Xenopusextract-dependent manner. U1 snRNA export requires a 5′ monomethylated cap structure, the nuclear export signal receptor CRM1, and the small GTPase Ran. In contrast, mRNA export does not require the participation of CRM1. We show here that NXT1, an NTF2-related protein that binds directly to RanGTP, strongly stimulates export of U1 snRNA, tRNA, and mRNA. The ability of NXT1 to promote export is dependent on its capacity to bind RanGTP. These results support the emerging view that NXT1 is a general export factor, functioning on both CRM1-dependent and CRM1-independent pathways of RNA export.


2000 ◽  
Vol 74 (14) ◽  
pp. 6684-6688 ◽  
Author(s):  
Claudia Rabino ◽  
Anders Aspegren ◽  
Kara Corbin-Lickfett ◽  
Eileen Bridge

ABSTRACT Adenovirus late mRNA export is facilitated by viral early proteins of 55 and 34 kDa. The 34-kDa protein contains a leucine-rich nuclear export signal (NES) similar to that of the human immunodeficiency virus Rev protein. It was proposed that the 34-kDa protein might facilitate the export of adenovirus late mRNA through a Rev-like NES-mediated export pathway. We have tested the role of NES-mediated RNA export during adenovirus infection, and we find that it is not essential for the expression of adenovirus late genes.


2011 ◽  
Vol 411 (5) ◽  
pp. 1114-1127 ◽  
Author(s):  
Mercedes Spínola-Amilibia ◽  
José Rivera ◽  
Miguel Ortiz-Lombardía ◽  
Antonio Romero ◽  
José L. Neira ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e91953 ◽  
Author(s):  
Yawei Shi ◽  
Lei Zhang ◽  
Ting Yang

Virology ◽  
2001 ◽  
Vol 288 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lin Chen ◽  
Gangling Liao ◽  
Masahiro Fujimuro ◽  
O.John Semmes ◽  
S.Diane Hayward

2021 ◽  
Author(s):  
Xiaohui Xu ◽  
Han Wang ◽  
Jiqin Liu ◽  
Shuying Han ◽  
Miaomiao Lin ◽  
...  

Abstract Background: OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation?Results: In this study, we characterized they interacted with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαDIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαDIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal. Similarly, we found that OsIMαDIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1 with an extra nuclear export signal compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae.Conclusion: These results indicated that OsWRKY62 localization is a consequence of competition binding between rice importins and exportins. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.


Sign in / Sign up

Export Citation Format

Share Document