coiled coils
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 74)

H-INDEX

69
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shankar Pandey ◽  
Shankar Mandal ◽  
Mathias Bogetoft Danielsen ◽  
Asha Brown ◽  
Changpeng Hu ◽  
...  

AbstractChiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins.


2021 ◽  
Author(s):  
Prakash Lama ◽  
Minhajuddin Sirajuddin

AbstractIntracellular cargo transport is powered by molecular motors that move on their respective filamentous tracks. A key component in this process is the tether between cargo and motor, which is often connected by long slender coiled-coils. Several studies have identified mechanisms that regulate cargo transport and can be broadly categorized into regulation of the motor ATPase activity by autoinhibition, cargo adapters and modifications in the cytoskeletal tracks. The regulatory effects of cargo-motor linkers have been described in kinesin-3 subfamily motors. However, the effects of cargo-motor linker rigidity on ensemble cargo transport has not been explored. Here we have built a DNA origami scaffold, which can be tethered with multiple kinesin-3 motors using either single or double-stranded DNA linkages, mimicking rigid versus flexible cargo-motor linkages. Using this system, we show that regardless of the motor numbers attached to the cargo, only linkers with a lesser degree of freedom allow motors to engage with microtubule tracks. Together, our work identifies that the rigidity of cargo-motor linkages influences motor motility. This opens up the possibilities to identify new factors that can influence the rigidity of cargo-motor linkages that in turn can regulate intracellular cargo transport.


Author(s):  
Italo A. Cavini ◽  
Diego A. Leonardo ◽  
Higor V. D. Rosa ◽  
Danielle K. S. V. Castro ◽  
Humberto D’Muniz Pereira ◽  
...  

In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lisa E Kursel ◽  
Henry D Cope ◽  
Ofer Rog

Functional requirements constrain protein evolution, commonly manifesting in a conserved amino acid sequence. Here, we extend this idea to secondary structural features by tracking their conservation in essential meiotic proteins with highly diverged sequences. The synaptonemal complex (SC) is a ~100-nm-wide ladder-like meiotic structure present in all eukaryotic clades, where it aligns parental chromosomes and regulates exchanges between them. Despite the conserved ultrastructure and functions of the SC, SC proteins are highly divergent within Caenorhabditis. However, SC proteins have highly conserved length and coiled-coil domain structure. We found the same unconventional conservation signature in Drosophila and mammals, and used it to identify a novel SC protein in Pristionchus pacificus, Ppa-SYP-1. Our work suggests that coiled-coils play wide-ranging roles in the structure and function of the SC, and more broadly, that expanding sequence analysis beyond measures of per-site similarity can enhance our understanding of protein evolution and function.


2021 ◽  
Author(s):  
Louise N. Slope ◽  
Oliver J. Daubney ◽  
Hannah Campbell ◽  
Scott A. White ◽  
Anna F. A. Peacock
Keyword(s):  

Author(s):  
Louise N. Slope ◽  
Oliver J. Daubney ◽  
Hannah Campbell ◽  
Scott A. White ◽  
Anna F. A. Peacock
Keyword(s):  

2021 ◽  
Vol 77 (9) ◽  
pp. 1116-1126 ◽  
Author(s):  
Joana Pereira ◽  
Vikram Alva

Biochemical and biophysical experiments are essential for uncovering the three-dimensional structure and biological role of a protein of interest. However, meaningful predictions can frequently also be made using bioinformatics resources that transfer knowledge from a well studied protein to an uncharacterized protein based on their evolutionary relatedness. These predictions are helpful in developing specific hypotheses to guide wet-laboratory experiments. Commonly used bioinformatics resources include methods to identify and predict conserved sequence motifs, protein domains, transmembrane segments, signal sequences, and secondary as well as tertiary structure. Here, several such methods available through the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) are described and how their combined use can provide meaningful information on a protein of unknown function is demonstrated. In particular, the identification of homologs of known structure using HHpred, internal repeats using HHrepID, coiled coils using PCOILS and DeepCoil, and transmembrane segments using Quick2D are focused on.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1960
Author(s):  
K. Tanuj Sapra ◽  
Ohad Medalia

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 961
Author(s):  
Jonathan Javier Mucherino Muñoz ◽  
Cláusio Antônio Ferreira de Melo ◽  
Raner José Santana Silva ◽  
Edna Dora Martins Newman Luz ◽  
Ronan Xavier Corrêa

Black pod disease, caused by Phytophthora spp., is one of the main diseases that attack cocoa plantations. This study validated, by association mapping, 29 SSR molecular markers flanking to QTL (Quantitative Trait Loci) associated with Phytophthora palmivora Butler (Butler) (PP) resistance, in three local ancient varieties of the Bahia (Comum, Pará, and Maranhão), varieties that have a high potential in the production of gourmet chocolate. Four SSR loci associated with resistance to PP were detected, two on chromosome 8, explaining 7.43% and 3.72% of the Phenotypic Variation (%PV), one on chromosome 2 explaining 2.71%PV and one on chromosome 3 explaining 1.93%PV. A functional domains-based annotation was carried out, in two Theobroma cacao (CRIOLLO and MATINA) reference genomes, of 20 QTL regions associated with cocoa resistance to the pathogen. It was identified 164 (genome CRIOLLO) and 160 (genome MATINA) candidate genes, hypothetically involved in the recognition and activation of responses in the interaction with the pathogen. Genomic regions rich in genes with Coiled-coils (CC), nucleotide binding sites (NBS) and Leucine-rich repeat (LRR) domains were identified on chromosomes 1, 3, 6, 8, and 10, likewise, regions rich in Receptor-like Kinase domain (RLK) and Ginkbilobin2 (GNK2) domains were identified in chromosomes 4 and 6.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Naomi J Petela ◽  
Andres Gonzalez Llamazares ◽  
Sarah Dixon ◽  
Bin Hu ◽  
Byung-Gil Lee ◽  
...  

Cohesin’s association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being ‘clamped’ by Scc2 and ATP-dependent engagement of cohesin’s Smc1 and Smc3 head domains. Scc2’s replacement by Pds5 abrogates cohesin’s ATPase and has an important role in halting DNA loop extrusion. The ATPase domains of all SMC proteins are separated from their hinge dimerisation domains by 50-nm-long coiled coils, which have been observed to zip up along their entire length and fold around an elbow, thereby greatly shortening the distance between hinges and ATPase heads. Whether folding exists in vivo or has any physiological importance is not known. We present here a cryo-EM structure of the apo form of cohesin that reveals the structure of folded and zipped-up coils in unprecedented detail and shows that Scc2 can associate with Smc1’s ATPase head even when it is fully disengaged from that of Smc3. Using cysteine-specific crosslinking, we show that cohesin’s coiled coils are frequently folded in vivo, including when cohesin holds sister chromatids together. Moreover, we describe a mutation (SMC1D588Y) within Smc1’s hinge that alters how Scc2 and Pds5 interact with Smc1’s hinge and that enables Scc2 to support loading in the absence of its normal partner Scc4. The mutant phenotype of loading without Scc4 is only explicable if loading depends on an association between Scc2/4 and cohesin’s hinge, which in turn requires coiled coil folding.


Sign in / Sign up

Export Citation Format

Share Document