In vivo dendritic calcium dynamics in neocortical pyramidal neurons

Nature ◽  
1997 ◽  
Vol 385 (6612) ◽  
pp. 161-165 ◽  
Author(s):  
Karel Svoboda ◽  
Winfried Denk ◽  
David Kleinfeld ◽  
David W. Tank
2020 ◽  
Author(s):  
Lauren Tereshko ◽  
Ya Gao ◽  
Brian A. Cary ◽  
Gina G. Turrigiano ◽  
Piali Sengupta

ABSTRACTPrimary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured neocortical pyramidal neurons, and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to pyramidal neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses, and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.


10.1038/14788 ◽  
1999 ◽  
Vol 2 (11) ◽  
pp. 989-996 ◽  
Author(s):  
Fritjof Helmchen ◽  
Karel Svoboda ◽  
Winfried Denk ◽  
David W. Tank

2000 ◽  
Vol 84 (3) ◽  
pp. 1488-1496 ◽  
Author(s):  
Nicolas Hô ◽  
Alain Destexhe

Neocortical pyramidal neurons in vivo are subject to an intense synaptic background activity but little is known of how this activity affects cellular responsiveness and what function it may serve. These issues were examined in morphologically reconstructed neocortical pyramidal neurons in which synaptic background activity was simulated based on recent measurements in cat parietal cortex. We show that background activity can be decomposed into two components: a tonically active conductance and voltage fluctuations. Previous studies have mostly focused on the conductance effect, revealing that background activity is responsible for a decrease in responsiveness, which imposes severe conditions of coincidence of inputs necessary to discharge the cell. It is shown here, in contrast, that responsiveness is enhanced if voltage fluctuations are taken into account; in this case the model can produce responses to inputs that would normally be subthreshold. This effect is analyzed by dissecting and comparing the different components of background activity, as well as by evaluating the contribution of parameters such as the dendritic morphology, the distribution of leak currents, the value of axial resistivity, the densities of voltage-dependent currents, and the release parameters underlying background activity. Interestingly, the model's optimal responsiveness was obtained when voltage fluctuations were of the same order as those measured intracellularly in vivo. Possible consequences were also investigated at the population level, where the presence of background activity allowed networks of pyramidal neurons to instantaneously detect inputs that are small compared with the classical detection threshold. These results suggest, at the single-cell level, that the presence of voltage fluctuations has a determining influence on cellular responsiveness and that these should be taken into account in models of background activity. At the network level, we predict that background activity provides the necessary drive for detecting events that would normally be undetectable. Experiments are suggested to explore this possible functional role for background activity.


Sign in / Sign up

Export Citation Format

Share Document