calcium dynamics
Recently Published Documents


TOTAL DOCUMENTS

782
(FIVE YEARS 160)

H-INDEX

55
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Viljem Pohorec ◽  
Lidija Krizancic Bombek ◽  
Masa Skelin Klemen ◽  
Jurij Dolensek ◽  
Andraz Stozer

Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between NMRI, C57BL/6J, and C57BL/6N mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease.


2022 ◽  
Author(s):  
Macarena Pozo-Morales ◽  
Ines Garteizgogeascoa ◽  
Camille Perazzolo ◽  
Sumeet Pal Singh

Hepatocytes were the first cell-type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a non-invasive manner due to the optical inaccessibility of the mammalian liver. Here we take advantage of the transparency of the zebrafish larvae to develop a setup that allows in vivo imaging of calcium flux in zebrafish hepatocytes at cellular resolution. Using this, we provide quantitative assessment of intracellular calcium dynamics during multiple contexts, including growth, feeding, ethanol-induced stress and cell ablation. Specifically, we show that synchronized calcium oscillations are present in vivo, which are lost upon starvation. Feeding recommences calcium waves in the liver, but in a spatially restricted manner. Further, ethanol treatment as well as cell ablation induces calcium flux, but with different dynamics. The former causes asynchronous calcium oscillations, while the latter leads to a single calcium spike. Overall, we demonstrate the presence of oscillations, waves and spikes in vivo. Thus, our study introduces a platform for observing diverse calcium dynamics while maintaining the native environment of the liver, which will help investigations into the dissection of molecular mechanisms supporting the intra- and intercellular calcium signaling in the liver.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 989
Author(s):  
Tuan Minh Hoang-Trong ◽  
Aman Ullah ◽  
William Jonathan Lederer ◽  
Mohsin Saleet Jafri

Calcium (Ca2+) plays a central role in the excitation and contraction of cardiac myocytes. Experiments have indicated that calcium release is stochastic and regulated locally suggesting the possibility of spatially heterogeneous calcium levels in the cells. This spatial heterogeneity might be important in mediating different signaling pathways. During more than 50 years of computational cell biology, the computational models have been advanced to incorporate more ionic currents, going from deterministic models to stochastic models. While periodic increases in cytoplasmic Ca2+ concentration drive cardiac contraction, aberrant Ca2+ release can underly cardiac arrhythmia. However, the study of the spatial role of calcium ions has been limited due to the computational expense of using a three-dimensional stochastic computational model. In this paper, we introduce a three-dimensional stochastic computational model for rat ventricular myocytes at the whole-cell level that incorporate detailed calcium dynamics, with (1) non-uniform release site placement, (2) non-uniform membrane ionic currents and membrane buffers, (3) stochastic calcium-leak dynamics and (4) non-junctional or rogue ryanodine receptors. The model simulates spark-induced spark activation and spark-induced Ca2+ wave initiation and propagation that occur under conditions of calcium overload at the closed-cell condition, but not when Ca2+ levels are normal. This is considered important since the presence of Ca2+ waves contribute to the activation of arrhythmogenic currents.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009646
Author(s):  
Stefano Longobardi ◽  
Anna Sher ◽  
Steven A. Niederer

Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state.


Author(s):  
Wanni Chia ◽  
Maria G. Gomez-Lorenzo ◽  
Isabel Castellote ◽  
Jie Xin Tong ◽  
Rajesh Chandramohanadas ◽  
...  

2021 ◽  
Vol 297 (4) ◽  
pp. 101196
Author(s):  
William T. King ◽  
Christopher L. Axelrod ◽  
Elizabeth R.M. Zunica ◽  
Robert C. Noland ◽  
Gangarao Davuluri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document