scholarly journals Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae

2010 ◽  
Vol 5 (4) ◽  
pp. 759-770 ◽  
Author(s):  
Nicole S Webster ◽  
Rochelle Soo ◽  
Rose Cobb ◽  
Andrew P Negri
Coral Reefs ◽  
2018 ◽  
Vol 37 (2) ◽  
pp. 397-407 ◽  
Author(s):  
Franziska Elmer ◽  
James J. Bell ◽  
Jonathan P. A. Gardner

2023 ◽  
Vol 83 ◽  
Author(s):  
Guntur ◽  
O.M. Luthfi ◽  
M. A. Asadi

Abstract Crustose coralline algae (Corallinophycideae) are red algae that produced calcium carbonate and are well recognized as foundation species in the epipelagic zone of the marine ecosystem. These algae induced settlement juvenile of coral by released chemical cues from bacterial communities on the surface of their colonies. Their extracellular calcium carbonate also can stabilize reef structure that influencing many invertebrate attaches and growth in the seabed. Crustose coralline algae (CCA) have obtained attention because of their distribution and health compromise to increasing seawater temperature, ocean acidification, and pollutant. As a cryptic species in the ecosystem, the presence of CCA recruit sometimes doesn’t have attention, especially on their capability to occupy the empty space. This study aimed to document coverage and number of CCA recruit in two different recruitment tile’s material. The highest CCA percentage of the cover was showed inside surface than others surface in all stations. Light intensity and low sedimentation were suggested as a key factor of success of high coverage. Overall, station higher CCA recruits have shown from Tiga Warna. Low sedimentation and protection from aerial exposure became the main reason for it. No significant difference number of CCA recruits between marble and sandstone in this study. Successful CCA recruitment in this study can give a wide picture that natural recruitment of coral and other reef biodiversity in Southern Malang might be will succeed because of the abundance of coralline algae that support their life history stage.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20142260 ◽  
Author(s):  
Natalia S. Winkler ◽  
John M. Pandolfi ◽  
Eugenia M. Sampayo

The global distribution of marine species, many of which disperse during the larval stages, is influenced by ocean temperature regimes. Here, we test how temperature and the coral symbionts ( Symbiodinium ) affect survival, symbiont uptake, settlement success and habitat choice of Acropora millepora larvae. Experiments were conducted at Heron Island (Australia), where larvae were exposed to 22.5, 24.5, 26.5 and 28.5°C. Within each temperature treatment, larvae were offered symbionts with distinct characteristics: (i) homologous Symbiodinium type C3, (ii) regionally homologous thermo-tolerant type D1, and (iii) heterologous thermo-tolerant type C15, as well as controls of (iv) un-filtered and (v) filtered seawater. Results show that lower instead of higher temperatures adversely affected recruitment by reducing larval survival and settlement. Low temperatures also reduced recruit habitat choice and initial symbiont densities, both of which impact on post-settlement survival. At lower temperatures, larvae increasingly settle away from preferred vertical surfaces and not on crustose coralline algae (CCA). Surprisingly, substrate preference to CCA was modified by the presence of specific symbiont genotypes that were present ex-hospite (outside the coral larvae). When different symbionts were mixed, the outcomes were non-additive, indicating that symbiont interactions modify the response. We propose that the observed influence of ex-hospite symbionts on settlement behaviour may have evolved through ecological facilitation and the study highlights the importance of biological processes during coral settlement.


Coral Reefs ◽  
2015 ◽  
Vol 34 (4) ◽  
pp. 1243-1253 ◽  
Author(s):  
Nachshon Siboni ◽  
David Abrego ◽  
Christian Evenhuis ◽  
Murray Logan ◽  
Cherie A. Motti

2009 ◽  
Vol 50 (47) ◽  
pp. 6606-6609 ◽  
Author(s):  
Makoto Kitamura ◽  
Peter J. Schupp ◽  
Yoshikatsu Nakano ◽  
Daisuke Uemura

2014 ◽  
Author(s):  
Sarah W Davies ◽  
Eli Meyer ◽  
Sarah M Guermond ◽  
Mikhail V Matz

Caribbean coral reefs have deteriorated substantially over the past 30 years, which is broadly attributable to the effects of global climate change. In the same time, Indo-Pacific reefs maintain higher coral cover and typically recover rapidly after disturbances. This difference in reef resilience is largely due to much higher coral recruitment rates in the Pacific. We hypothesized that the lack of Caribbean coral recruitment might be explained by diminishing quality of settlement cues and/or impaired sensitivity of Caribbean coral larvae to those cues, relative to the Pacific. To evaluate this hypothesis, we assembled a collection of bulk samples of reef encrusting communities, mostly consisting of crustose coralline algae (CCA), from various reefs around the world and tested them as settlement cues for several coral species originating from different ocean provinces. Cue samples were meta-barcoded to evaluate their taxonomic diversity. We observed no systematic differences either in cue potency or in strength of larval responses depending on the ocean province, and no preference of coral larvae towards cues from the same ocean. Instead, we detected significant differences in cue preferences among coral species, even for corals originating from the same reef. We conclude that the region-wide disruption of the settlement process is unlikely to be the major cause of Caribbean reef loss. However, due to their high sensitivity to the effects of climate change, shifts in the composition of CCA-associated communities, combined with pronounced differences in cue preferences among coral species, could substantially influence future coral community structure.


2014 ◽  
Author(s):  
Sarah W Davies ◽  
Eli Meyer ◽  
Sarah M Guermond ◽  
Mikhail V Matz

Caribbean coral reefs have deteriorated substantially over the past 30 years, which is broadly attributable to the effects of global climate change. In the same time, Indo-Pacific reefs maintain higher coral cover and typically recover rapidly after disturbances. This difference in reef resilience is largely due to much higher coral recruitment rates in the Pacific. We hypothesized that the lack of Caribbean coral recruitment might be explained by diminishing quality of settlement cues and/or impaired sensitivity of Caribbean coral larvae to those cues, relative to the Pacific. To evaluate this hypothesis, we assembled a collection of bulk samples of reef encrusting communities, mostly consisting of crustose coralline algae (CCA), from various reefs around the world and tested them as settlement cues for several coral species originating from different ocean provinces. Cue samples were meta-barcoded to evaluate their taxonomic diversity. We observed no systematic differences either in cue potency or in strength of larval responses depending on the ocean province, and no preference of coral larvae towards cues from the same ocean. Instead, we detected significant differences in cue preferences among coral species, even for corals originating from the same reef. We conclude that the region-wide disruption of the settlement process is unlikely to be the major cause of Caribbean reef loss. However, due to their high sensitivity to the effects of climate change, shifts in the composition of CCA-associated communities, combined with pronounced differences in cue preferences among coral species, could substantially influence future coral community structure.


2021 ◽  
Vol 168 (8) ◽  
Author(s):  
Xinming Lei ◽  
Lei Jiang ◽  
Yuyang Zhang ◽  
Youfang Sun ◽  
Guowei Zhou ◽  
...  

AbstractSelection of a permanent attachment site of coral larvae can be a critical determinant of recruitment success affecting the structure of coral communities and underpins the ability of coral reef ecosystems to recover from disturbance. Settlement specificity of a threatened coral in Sanya reefs, Acropora millepora, was tested by measuring the larval metamorphosis preferences and post-settlement survival in response to crustose coralline algae (CCA) species Hydrolithon reinboldii and other substrata. In the no-choice experiments, the larvae of A. millepora had similar rates of total metamorphosis with the presence of CCA regardless of the algae tissue being alive or not, and settlement success induced by CCA was higher than by other substrata (tile or glass). In the paired-choice experiments, when CCA was in presence, the coral larvae preferred the surface of the dish and the side of living CCA. In the absence of CCA, total larvae metamorphosis was lower than in the treatments where CCA was present. New recruits of A. millepora had approximately 68% mean survival on all the settlement substrata after 2 weeks maintained in aquaria with flow-through seawater similar to the coral larval sampling site, but with no coral spat survival in the treatments where CCA was absent. However, there were statistical differences between the larvae survival of dead CCA and glass chips treatment and the others where CCA was present. Our results were consistent with the conclusion that some CCA species could facilitate coral larval settlement and post-settlement survivorship, highlighting the importance of substrata selection success for facilitating coral recruitment in the threatened coral reefs.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Alexandra Ramírez-Viaña ◽  
Guillermo Diaz-Pulido ◽  
Rocío García-Urueña

2005 ◽  
Vol 51 (1-4) ◽  
pp. 415-427 ◽  
Author(s):  
Lindsay Harrington ◽  
Katharina Fabricius ◽  
Geoff Eaglesham ◽  
Andrew Negri

Sign in / Sign up

Export Citation Format

Share Document