caribbean coral
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 45)

H-INDEX

55
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Olivia Mavahlia Williamson ◽  
Caroline E Dennison ◽  
Keri L O'Neil ◽  
Andrew Charles Baker

Stony coral tissue loss disease (SCTLD) has devastated coral populations along Florida′s Coral Reef and beyond. Although widespread infection and mortality of adult colonies have been documented, no studies have yet investigated the susceptibility of recruits to this disease. Here, we exposed eight-month-old Diploria labyrinthiformis recruits and four-month-old Colpophyllia natans recruits to two sequential doses of SCTLD in the laboratory to track infection and assess potential resilience. Both species began to develop lesions as early as 48 h after exposure began. During the first dose, 59.0% of C. natans recruits lost all tissue (died) within two to eight days of developing lesions, whereas D. labyrinthiformis recruits experienced significantly slower rates of tissue loss and minimal eventual mortality. In C. natans, larger recruits and those fused into groups of multiple genets (chimeras) exhibited the highest survivorship. In contrast, smaller and/or single (ungrouped) recruits had the lowest survivorship (9.9 - 26.5%). After 20 days, a second SCTLD dose was delivered to further test resistance in remaining recruits, and all recruits of both species succumbed within 6 days. Although no recruits showed absolute resistance to SCTLD following repeated exposures, our results provide evidence that interactions between species, size, and chimerism can impact relative resistance. This study represents the first report of SCTLD in Caribbean coral recruits and carries implications for natural species recovery and reef restoration efforts. Additional research on the susceptibility of coral juveniles to SCTLD is urgently needed, to include different species, locations, parents, and algal symbionts, with the goal of assessing relative susceptibility and identifying potential sources of resilience for this critical life history stage.


2021 ◽  
Author(s):  
Lorenzo Alvarez-Filip ◽  
F. González-Barrios ◽  
Esmeralda Pérez-Cervantes ◽  
Ana Molina-Hernandez ◽  
Nuria Estrada-Saldívar

Abstract Diseases are major drivers of the deterioration of coral reefs, linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services1-3. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican reef by summer 2018, where it spread across the ~ 450-km reef system only in a few months4. Rapid infection was generalized across all sites and mortality rates ranged from 94% to < 10% among the 21 afflicted coral species. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids (a genus apparently unaffected) will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maggie D. Johnson ◽  
Jarrod J. Scott ◽  
Matthieu Leray ◽  
Noelle Lucey ◽  
Lucia M. Rodriguez Bravo ◽  
...  

AbstractLoss of oxygen in the global ocean is accelerating due to climate change and eutrophication, but how acute deoxygenation events affect tropical marine ecosystems remains poorly understood. Here we integrate analyses of coral reef benthic communities with microbial community sequencing to show how a deoxygenation event rapidly altered benthic community composition and microbial assemblages in a shallow tropical reef ecosystem. Conditions associated with the event precipitated coral bleaching and mass mortality, causing a 50% loss of live coral and a shift in the benthic community that persisted a year later. Conversely, the unique taxonomic and functional profile of hypoxia-associated microbes rapidly reverted to a normoxic assemblage one month after the event. The decoupling of ecological trajectories among these major functional groups following an acute event emphasizes the need to incorporate deoxygenation as an emerging stressor into coral reef research and management plans to combat escalating threats to reef persistence.


2021 ◽  
Author(s):  
Katie L. Cramer ◽  
Mary K. Donovan ◽  
Jeremy B. C. Jackson ◽  
Benjamin J. Greenstein ◽  
Chelsea A. Korpanty ◽  
...  

Metabolomics ◽  
2021 ◽  
Vol 17 (7) ◽  
Author(s):  
Joseph A. Henry ◽  
Ram B. Khattri ◽  
Joy Guingab-Cagmat ◽  
Matthew E. Merritt ◽  
Timothy J. Garrett ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicholas J. MacKnight ◽  
Kathryn Cobleigh ◽  
Danielle Lasseigne ◽  
Andia Chaves-Fonnegra ◽  
Alexandra Gutting ◽  
...  

AbstractDisease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral’s ecological function and ultimately shape reef ecosystems.


Sign in / Sign up

Export Citation Format

Share Document