settlement behaviour
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 36)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Hussein Ahmad ◽  
Mohammad Hosein Hoseini ◽  
Ahmad Mahboubi ◽  
Ali Noorzad ◽  
Mostafa Zamanian

2021 ◽  
Vol 16 (4) ◽  
pp. 153-175
Author(s):  
Xin Jiang ◽  
Xiaoli Chen ◽  
Yongguo Fu ◽  
Hanyan Gu ◽  
Jinming Hu ◽  
...  

An elastoplastic numerical model for calculating the consolidation settlement of wide embankment on soft ground is established using PLAXIS finite element software to investigate the settlement behaviour of soft ground under the wide embankment. The distribution rules are analysed and compared to narrow embankments, such as surface settlements of ground and embankment, lateral displacement of soft ground at the foot of embankment slope and excess pore pressure in soft ground. The influence rule of elastic modulus of soft ground on the settlement of soft ground under wide embankment is discussed. The results show that the settlement distributions of wide and narrow embankments on soft ground are “W” and “V” shapes, respectively. The maximum settlement of wide embankment is near the foot of the embankment slope, which is unequal to the settlement at the centreline of the embankment. The lateral displacement distribution rules of soft ground are both “belly” shaped at the foot of two types of embankments slope. However, the lateral displacement of the wide embankment is larger in each corresponding stage. During the construction period, the excess pore pressure in the soft ground under the wide embankment is much higher than that of the narrow embankment, so the post-construction consolidation time of the wide embankment is longer. Moreover, the macroscopic settlement rule of the wide embankment is still the same with the increase of elastic modulus of soft ground.


2021 ◽  
Vol 31 (3) ◽  
pp. 152-176
Author(s):  
Priyanka Rawat ◽  
Rakesh Kumar Dutta

Abstract The aim of the present numerical study was to analyse the pressure settlement behaviour and bearing capacity of asymmetric plus shaped footing resting on loose sand overlying dense sand at varying embedment depth. The numerical investigation was carried out using ABAQUS software. The effect of depth of embedment, friction angle of upper loose and lower dense sand layer and thickness of upper loose sand on the bearing capacity of the asymmetric plus shaped footing was studied in this investigation. Further, the comparison of the results of the bearing capacity was made between the asymmetric and symmetric plus shaped footing. The results reveal that with increase in depth of embedment, the dimensionless bearing capacity of the footings increased. The highest increase in the dimensionless bearing capacity was observed at embedment ratio of 1.5. The increase in the bearing capacity was 12.62 and 11.40 times with respect to the surface footings F1 and F2 corresponding to a thickness ratio of 1.5. The lowest increase in the dimensionless bearing capacity was observed at embedment ratio of 0.1 and the corresponding increase in the bearing capacity was 1.05 and 1.02 times with respect to the surface footing for footings F1 and F2 at a thickness ratio of 1.5.


Author(s):  
J.S. Yadav ◽  
K. Kumar ◽  
R.K. Dutta ◽  
A. Garg

Purpose: This study aims to study the load – settlement behaviour of circular footing rested on encased single stone column. Design/methodology/approach: The effect of vertical, horizontal and combined verticalhorizontal encasement of stone column on the load carrying capacity were examined numerically. The effect of stone column dimension (80 mm and 100 mm), length (400 mm and 500 mm), and spacing of reinforcement on the load carrying capacity and reinforcement ratio were assessed. Findings: The obtained results revealed that the load carrying capacity of geotextile encased stone columns are more than ordinary stone columns. For vertically encased stone columns as the diameter increases, the advantage of encasement decreases. Whereas, for horizontally encased stone column and combined vertical- horizontal encased stone column, the performance of encasement intensifies as the diameter of stone column increases. The improvement in the load carrying capacity of clay bed reinforced with combined verticalhorizontal encased stone columns are higher than vertical encased stone columns or horizontal encased stone column. The maximum performance of encasement was observed for VHESC1 of D = 80 mm. Research limitations/implications: For this study, the diameter of footing and stone column was kept same. The interface strength factor between stone column and clay bed was not considered. Practical implications: The encased stone column could be use improve the laod bearing capacity of weak soils. Originality/value: Many studies are available in literature regarding use of geosynthetic as vertical encasement and horizontal encasement of stone column. The study on combined effect of vertical and horizontal encasement of stone column on load carrying capacity of weak soil is very minimal. Keeping this in view, the present work was carried out.


Sign in / Sign up

Export Citation Format

Share Document