scholarly journals Beasts of burden: large animal chimeras using human pluripotent stem cells

Lab Animal ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 77-77
Author(s):  
Dustin M. Graham
2021 ◽  
Vol 8 ◽  
Author(s):  
Yusuke Soma ◽  
Yuika Morita ◽  
Yoshikazu Kishino ◽  
Hideaki Kanazawa ◽  
Keiichi Fukuda ◽  
...  

The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.


Author(s):  
Yu Gao ◽  
Jun Pu

Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 326-LB
Author(s):  
LARRY SAI WENG LOO ◽  
ADRIAN TEO ◽  
SOUMITA GHOSH ◽  
ANDREAS ALVIN PURNOMO SOETEDJO ◽  
LINH NGUYEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document