human pluripotent stem cells
Recently Published Documents


TOTAL DOCUMENTS

1950
(FIVE YEARS 578)

H-INDEX

106
(FIVE YEARS 16)

2022 ◽  
Vol 72 ◽  
pp. 22-29
Author(s):  
Elena Garreta ◽  
Zarina Nauryzgaliyeva ◽  
Andres Marco ◽  
Wajima Safi ◽  
Nuria Montserrat

Author(s):  
Fujian Wu ◽  
Tianwei Guo ◽  
Lixiang Sun ◽  
Furong Li ◽  
Xiaofei Yang

AbstractHuman pluripotent stem cells (hPSCs) have great potential for disease modeling, drug discovery, and regenerative medicine as they can differentiate into many different functional cell types via directed differentiation. However, the application of disease modeling is limited due to a time-consuming and labor-intensive process of introducing known pathogenic mutations into hPSCs. Base editing is a newly developed technology that enables the facile introduction of point mutations into specific loci within the genome of living cells without unwanted genome injured. We describe an optimized stepwise protocol to introduce disease-specific mutations of long QT syndrome (LQTs) into hPSCs. We highlight technical issues, especially those associated with introducing a point mutation to obtain isogenic hPSCs without inserting any resistance cassette and reproducible cardiomyocyte differentiation. Based on the protocol, we succeeded in getting hPSCs carrying LQTs pathogenic mutation with excellent efficiency (31.7% of heterozygous clones, 9.1% of homozygous clones) in less than 20 days. In addition, we also provide protocols to analyze electrophysiological of hPSC-derived cardiomyocytes using multi-electrode arrays. This protocol is also applicable to introduce other disease-specific mutations into hPSCs. Graphical abstract


2022 ◽  
pp. 1-27
Author(s):  
Sébastien Sart ◽  
Xuegang Yuan ◽  
Richard Jeske ◽  
Yan Li

Life Sciences ◽  
2022 ◽  
pp. 120298
Author(s):  
Praewa Suthapot ◽  
Tiaojiang Xiao ◽  
Gary Felsenfeld ◽  
Suradej Hongeng ◽  
Patompon Wongtrakoongate

2021 ◽  
Author(s):  
Tingcai Pan ◽  
Ning Wang ◽  
Jiaye Zhang ◽  
Fan Yang ◽  
Yan Chen ◽  
...  

Abstract Background: Various methods have been developed to generate hepatic cells from human pluripotent stem cells (hPSCs) that rely on the combined use of multiple expensive growth factors, limiting industrial-scale production and widespread applications. Small molecules offer an attractive alternative to growth factors for producing hepatic cells since they are more economical and relatively stable. Methods: We dissect small-molecule combinations and identify the ideal cocktails to achieve an optimally efficient and cost-effective strategy for hepatic cells differentiation, expansion, and maturation.Results: We demonstrated that small-molecule cocktail CIP efficiently induced definitive endoderm (DE) formation via increased endogenous TGF-β/Nodal signaling. Furthermore, we identified that combining Vitamin C, Dihexa, and Forskolin (VDF) could substitute growth factors to induce hepatic specification. The obtained hepatoblasts (HBs) could subsequently expand and mature into functional hepatocyte-like cells (HLCs) by the established chemical formulas. Thus, we established a stepwise strategy with complete small molecules for efficiently producing scalable HBs and functionally matured HLCs. The small-molecule derived HLCs displayed typical functional characteristics as mature hepatocytes in vitro and repopulating injured liver in vivo. Conclusion: Our current small-molecule based hepatic generation protocol presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery using.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yusuke Soma ◽  
Yuika Morita ◽  
Yoshikazu Kishino ◽  
Hideaki Kanazawa ◽  
Keiichi Fukuda ◽  
...  

The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.


Sign in / Sign up

Export Citation Format

Share Document