Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion

Nature ◽  
2005 ◽  
Vol 438 (7067) ◽  
pp. 483-487 ◽  
Author(s):  
Ann Holbourn ◽  
Wolfgang Kuhnt ◽  
Michael Schulz ◽  
Helmut Erlenkeuser
1986 ◽  
Vol 26 (1) ◽  
pp. 3-26 ◽  
Author(s):  
George H. Denton ◽  
Terence J. Hughes ◽  
Wibjörn Karlén

Denton and Hughes (1983, Quaternary Research 20, 125–144) postulated that sea level linked a global ice-sheet system with both terrestrial and grounded marine components during late Quaternary ice ages. Summer temperature changes near Northern Hemisphere melting margins initiated sea-level fluctuations that controlled marine components in both polar hemispheres. It was further proposed that variations of this ice-sheet system amplified and transmitted Milankovitch summer half-year insolation changes between 45 and 75°N into global climatic changes. New tests of this hypothesis implicate sea level as a major control of the areal extent of grounded portions of the Antarctic Ice Sheet, thus fitting the concept of a globally interlocked ice-sheet system. But recent atmospheric modeling results (Manabe and Broccoli, 1985, Journal of Geophysical Research 90, 2167–2190) suggest that factors other than areal changes of the grounded Antarctic Ice Sheet strongly influenced Southern Hemisphere climate and terminated the last ice age simultaneously in both polar hemispheres. Atmospheric carbon dioxide linked to high-latitude oceans is the most likely candidate (Shackleton and Pisias, 1985, Atmospheric carbon dioxide, orbital forcing, and climate. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (E. T. Sundquest and W. S. Broecker, Eds.), pp. 303–318. Geophysical Monograph 32, American Geophysical Union, Washington, D.C.), but another potential influence was high-frequency climatic oscillations (2500 yr). It is postulated that variations in atmospheric carbon dioxide acted through an Antarctic ice shelf linked to the grounded ice sheet to produce and terminate Southern Hemisphere ice-age climate. It is further postulated that Milankovitch summer insolation combined with a warm high-frequency oscillation caused marked recession of Northern Hemisphere ice-sheet melting margins and the North Atlantic polar front about 14,000 14C yr B.P. This permitted renewed formation of North Atlantic Deep Water, which could well have controlled atmospheric carbon dioxide (W. S. Broecker, D. M. Peteet, and D. Rind, 1985, Nature (London) 315, 21–26). Combined melting and consequent sea-level rise from the three warming factors initiated irreversible collapse of the interlocked global ice-sheet system, which was at its largest but most vulnerable configuration.


2014 ◽  
Vol 29 (8) ◽  
pp. 810-823 ◽  
Author(s):  
Jean-Baptiste Ladant ◽  
Yannick Donnadieu ◽  
Vincent Lefebvre ◽  
Christophe Dumas

Sign in / Sign up

Export Citation Format

Share Document