The impact of global land-cover change on the terrestrial water cycle

2012 ◽  
Vol 3 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Shannon M. Sterling ◽  
Agnès Ducharne ◽  
Jan Polcher
2021 ◽  
Vol 258 ◽  
pp. 112364
Author(s):  
Han Liu ◽  
Peng Gong ◽  
Jie Wang ◽  
Xi Wang ◽  
Grant Ning ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 2589
Author(s):  
Tana Qian ◽  
Tsuguki Kinoshita ◽  
Minoru Fujii ◽  
Yuhai Bao

Global land-cover products play an important role in assisting the understanding of climate-related changes and the assessment of progress in the implementation of international initiatives for the mitigation of, and adaption to, climate change. However, concerns over the accuracies of land-cover products remain, due to the issue of validation data uncertainty. The volunteer-based Degree Confluence Project (DCP) was created in 1996, and it has been used to provide useful ground-reference information. This study aims to investigate the impact of DCP-based validation data uncertainty and the thematic issues on map accuracies. We built a reference dataset based on the DCP-interpreted dataset and applied a comparison for three existing global land-cover maps and DCP dataset-based probability maps under different classification schemes. The results of the obtained confusion matrices indicate that the uncertainty, including the number of classes and the confusion in mosaic classes, leads to a decrease in map accuracy. This paper proposes an informative classification scheme that uses a matrix structure of unaggregated land-cover and land-use classes, and has the potential to assist in the land-cover interpretation and validation processes. The findings of this study can potentially serve as a guide to select reference data and choose/define appropriate classification schemes.


Author(s):  
Navin Ramankutty ◽  
Lisa Graumlich ◽  
Frédéric Achard ◽  
Diogenes Alves ◽  
Abha Chhabra ◽  
...  

Author(s):  
Chengpeng Zhang ◽  
Yu Ye ◽  
Xiuqi Fang ◽  
Hansunbai Li ◽  
Xue Zheng

Modern global cropland products have been widely used to assess the impact of land use and cover change (LUCC) on carbon budgets, climate change, terrestrial ecosystems, etc. However, each product has its own uncertainty, and inconsistencies exist among different products. Understanding the reliability of these datasets is essential for knowing the uncertainties that exist in the study of global change impact forced by cropland reclamation. In this paper, we propose a set of coincidence assessments to identify where reliable cropland distribution is by overlaying ten widely used global land cover/cropland datasets around 2000 AD. A quantitative assessment for different spatial units is also performed. We further discuss the spatial distribution characteristics of different coincidence degrees and explain the reasons. The results show that the high-coincidence proportion is only 40.5% around the world, and the moderate-coincidence and low-coincidence proportion is 18.4% and 41.1%, respectively. The coincidence degrees among different continents and countries have large discrepancies. The coincidence is relatively higher in Europe, South Asia and North America, while it is very poor in Latin America and Africa. The spatial distribution of high and moderate coincidence roughly corresponds to the regions with suitable agricultural conditions and intensive reclamation. In addition to the random factors such as the product’s quality and the year it represented, the low coincidence is mainly caused by the inconsistent land cover classification systems and the recognition capability of cropland pixels with low fractions in different products.


2005 ◽  
Vol 32 (23) ◽  
Author(s):  
S. Gibbard ◽  
K. Caldeira ◽  
G. Bala ◽  
T. J. Phillips ◽  
M. Wickett

Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 236
Author(s):  
Ling Zhu ◽  
Guangshuai Jin ◽  
Dejun Gao

Freely available satellite imagery improves the research and production of land-cover products at the global scale or over large areas. The integration of land-cover products is a process of combining the advantages or characteristics of several products to generate new products and meet the demand for special needs. This study presents an ontology-based semantic mapping approach for integration land-cover products using hybrid ontology with EAGLE (EIONET Action Group on Land monitoring in Europe) matrix elements as the shared vocabulary, linking and comparing concepts from multiple local ontologies. Ontology mapping based on term, attribute and instance is combined to obtain the semantic similarity between heterogeneous land-cover products and realise the integration on a schema level. Moreover, through the collection and interpretation of ground verification points, the local accuracy of the source product is evaluated using the index Kriging method. Two integration models are developed that combine semantic similarity and local accuracy. Taking NLCD (National Land Cover Database) and FROM-GLC-Seg (Finer Resolution Observation and Monitoring-Global Land Cover-Segmentation) as source products and the second-level class refinement of GlobeLand30 land-cover product as an example, the forest class is subdivided into broad-leaf, coniferous and mixed forest. Results show that the highest accuracies of the second class are 82.6%, 72.0% and 60.0%, respectively, for broad-leaf, coniferous and mixed forest.


Sign in / Sign up

Export Citation Format

Share Document