community climate system model
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 1)

H-INDEX

26
(FIVE YEARS 1)

2016 ◽  
Vol 9 (11) ◽  
pp. 3859-3873 ◽  
Author(s):  
Vidya Varma ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. Numerical simulations provide a considerable aid in studying past climates. Out of the various approaches taken in designing numerical climate experiments, transient simulations have been found to be the most optimal when it comes to comparison with proxy data. However, multi-millennial or longer simulations using fully coupled general circulation models are computationally very expensive such that acceleration techniques are frequently applied. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model version 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model–data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere.


2014 ◽  
Vol 27 (24) ◽  
pp. 9214-9232 ◽  
Author(s):  
Sandeep Sahany ◽  
J. David Neelin ◽  
Katrina Hales ◽  
Richard B. Neale

Abstract Tropical deep convective transition characteristics, including precipitation pickup, occurrence probability, and distribution tails related to extreme events, are analyzed using uncoupled and coupled versions of the Community Climate System Model (CCSM) under present-day and global warming conditions. Atmospheric Model Intercomparison Project–type simulations using a 0.5° version of the uncoupled model yield good matches to satellite retrievals for convective transition properties analyzed as a function of bulk measures of water vapor and tropospheric temperature. Present-day simulations with the 1.0° coupled model show transition behavior not very different from that seen in the higher-resolution uncoupled version. Frequency of occurrence of column water vapor (CWV) for precipitating points shows reasonable agreement with the retrievals, including the longer-than-Gaussian tails of the distributions. The probability density functions of precipitating grid points collapse toward similar form when normalized by the critical CWV for convective onset in both historical and global warming cases. Under global warming conditions, the following statements can be made regarding the precipitation statistics in the simulation: (i) as the rainfall pickup shifts to higher CWV with warmer temperatures, the critical CWV for the current climate is a good predictor for the same quantity under global warming with the shift given by straightforward conditional instability considerations; (ii) to a first approximation, the probability distributions shift accordingly, except that (iii) frequency of occurrence in the longer-than-Gaussian tail increases considerably, with implications for occurrences of extreme events; and, thus, (iv) precipitation conditional averages on CWV and tropospheric temperature tend to extend to higher values.


2014 ◽  
Vol 27 (14) ◽  
pp. 5219-5239 ◽  
Author(s):  
Melissa Gervais ◽  
John R. Gyakum ◽  
Eyad Atallah ◽  
L. Bruno Tremblay ◽  
Richard B. Neale

Abstract An intercomparison of the distribution and extreme values of daily precipitation between the National Center for Atmospheric Research Community Climate System Model, version 4 (CCSM4) and several observational/reanalysis data sources are conducted over the contiguous United States and southern Canada. The use of several data sources, from gridded station, satellite, and reanalysis products, provides a measure of errors in the reference datasets. An examination of specific locations shows that the global climate model (GCM) distributions closely match the observations along the East and West Coasts, with larger discrepancies in the Great Plains and Rockies. In general, the distribution of model precipitation is more positively skewed (more light and less heavy precipitation) in the Great Plains and the eastern United States compared to gridded station observations, a recurring error in GCMs. In the Rocky Mountains the GCMs generally overproduce precipitation relative to the observations and furthermore have a more negatively skewed distribution, with fewer lower daily precipitation values relative to higher values. Extreme precipitation tends to be underestimated in regions and time periods typically characterized by large amounts of convective precipitation. This is shown to be the result of errors in the parameterization of convective precipitation that have been seen in previous model versions. However, comparison against several data sources reveals that model errors in extreme precipitation are approaching the magnitude of the disparity between the reference products. This highlights the existence of large errors in some of the products employed as observations for validation purposes.


2013 ◽  
Vol 40 (10) ◽  
pp. 2121-2124 ◽  
Author(s):  
Marika M. Holland ◽  
Edward Blanchard-Wrigglesworth ◽  
Jennifer Kay ◽  
Steven Vavrus

Sign in / Sign up

Export Citation Format

Share Document