scholarly journals Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Xunyu Lu ◽  
Chuan Zhao
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiaxin Yuan ◽  
Xiaodi Cheng ◽  
Hanqing Wang ◽  
Chaojun Lei ◽  
Sameer Pardiwala ◽  
...  

AbstractCost-effective and stable electrocatalysts with ultra-high current densities for electrochemical oxygen evolution reaction (OER) are critical to the energy crisis and environmental pollution. Herein, we report a superaerophobic three dimensional (3D) heterostructured nanowrinkles of bimetallic selenides consisting of crystalline NiSe2 and NiFe2Se4 grown on NiFe alloy (NiSe2/NiFe2Se4@NiFe) prepared by a thermal selenization procedure. In this unique 3D heterostructure, numerous nanowrinkles of NiSe2/NiFe2Se4 hybrid with a thickness of ~ 100 nm are grown on NiFe alloy in a uniform manner. Profiting by the large active surface area and high electronic conductivity, the superaerophobic NiSe2/NiFe2Se4@NiFe heterostructure exhibits excellent electrocatalytic activity and durability towards OER in alkaline media, outputting the low potentials of 1.53 and 1.54 V to achieve ultra-high current densities of 500 and 1000 mA cm−2, respectively, which is among the most active Ni/Fe-based selenides, and even superior to the benchmark Ir/C catalyst. The in-situ derived FeOOH and NiOOH species from NiSe2/NiFe2Se4@NiFe are deemed to be efficient active sites for OER.


2017 ◽  
Vol 23 (42) ◽  
pp. 10187-10194 ◽  
Author(s):  
Feng Yan ◽  
Yue Wang ◽  
Kaiyue Li ◽  
Chunling Zhu ◽  
Peng Gao ◽  
...  

2020 ◽  
Vol 234 (5) ◽  
pp. 995-1019 ◽  
Author(s):  
Kirill Sliozberg ◽  
Yauhen Aniskevich ◽  
Ugur Kayran ◽  
Justus Masa ◽  
Wolfgang Schuhmann

AbstractCobalt-iron double hydroxide (CoFe–OH) films were electrochemically deposited on 3D Ni foam electrodes for the oxygen evolution reaction (OER). The dependence of the OER activity on film composition and thickness was evaluated, which revealed an optimal Fe:Co ratio of about 1:2.33. The composition of the catalyst film was observed to vary with film thickness. The electrodeposition parameters were carefully controlled to yield microstructured Ni-foam decorated with CoFe–OH films of controlled thickness and composition. The most active electrode exhibited an overpotential as low as 360 mV OER at an industrial scale current density of 400 mA cm−2 that remained stable for at least 320 h. This work contributes towards the fabrication of practical electrodes with the focus on the development of stable electrodes for electrocatalytic oxygen evolution at high current densities.


2019 ◽  
Vol 7 (3) ◽  
pp. 965-971 ◽  
Author(s):  
Xiaodi Cheng ◽  
Zhiyan Pan ◽  
Chaojun Lei ◽  
Yangjun Jin ◽  
Bin Yang ◽  
...  

A ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid with strong coupling and synergistic effects was developed for highly active OER at ultra-high current densities.


2014 ◽  
Vol 1641 ◽  
Author(s):  
Victoria Flexer ◽  
Nicolas Brun ◽  
Mathieu Destribats ◽  
Rénal Backov ◽  
Nicolas Mano

ABSTRACTHere we report the first membrane-less biofuel cell made by using three-dimensional carbonaceous foam electrodes. We first developed a new synthetic pathway to produce a new carbonaceous foam electrode material with increased porosity both in the meso and macroporous scale. We proved that by increasing the porosity of our three-dimensional foams we could increase the current density of our modified electrodes. Then, by choosing the right combination of enzyme and mediator, and the right loading of active components, we achieved unprecedentedly high current densities for an anodic system. Finally, we combined the improved cathode and anode to build a new membrane-less hybrid enzymatic biofuel cell consisting of a mediated anode and a mediator-less cathode.


Sign in / Sign up

Export Citation Format

Share Document