scholarly journals PTEN-deficient intestinal stem cells initiate intestinal polyposis

2007 ◽  
Vol 39 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Xi C He ◽  
Tong Yin ◽  
Justin C Grindley ◽  
Qiang Tian ◽  
Toshiro Sato ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jignesh Dalal ◽  
Mohamed Radhi

Enterocytes originating from gastrointestinal stem cells are basic building blocks of villi and crypts in human intestine. Little is known about intestinal stem cells (ISCs), their interaction with niche, and key pathways in their regulation. In this paper, we have reviewed the characteristics of ISC, its interaction with niche, and the understanding of key signaling pathways like Wnt. A better understanding of all of this will help to better utilize novel therapies like mesenchymal stromal cells (MSCs), R-spondin1, and sulindac in various disorders like colon cancer, graft-versus-host disease, intestinal polyposis, and radiation-related bowel injuries.


2020 ◽  
Author(s):  
Breanna Sheahan ◽  
Ally N. Freeman ◽  
Theresa M. Keeley ◽  
Linda C. Samuelson ◽  
Jatin Roper ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-741
Author(s):  
Matthew Ulgherait

Abstract Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways, but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, up-regulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents over-proliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.


2014 ◽  
Vol 55 (2) ◽  
pp. 381-390 ◽  
Author(s):  
Motohiro Yamauchi ◽  
Kensuke Otsuka ◽  
Hisayoshi Kondo ◽  
Nobuyuki Hamada ◽  
Masanori Tomita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document