intracellular reactive oxygen species
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 79)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tae Hwan Shin ◽  
Balachandran Manavalan ◽  
Da Yeon Lee ◽  
Shaherin Basith ◽  
Chan Seo ◽  
...  

Abstract Background Nanoparticles have been utilized in brain research and therapeutics, including imaging, diagnosis, and drug delivery, owing to their versatile properties compared to bulk materials. However, exposure to nanoparticles leads to their accumulation in the brain, but drug development to counteract this nanotoxicity remains challenging. To date, concerns have risen about the potential toxicity to the brain associated with nanoparticles exposure via penetration of the brain blood barrier to address this issue. Methods Here the effect of silica-coated-magnetic nanoparticles containing the rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] were assessed on microglia through toxicological investigation, including biological analysis and integration of transcriptomics, proteomics, and metabolomics. MNPs@SiO2(RITC)-induced biological changes, such as morphology, generation of reactive oxygen species, intracellular accumulation of MNPs@SiO2(RITC) using transmission electron microscopy, and glucose uptake efficiency, were analyzed in BV2 murine microglial cells. Each omics data was collected via RNA-sequencing-based transcriptome analysis, liquid chromatography-tandem mass spectrometry-based proteome analysis, and gas chromatography- tandem mass spectrometry-based metabolome analysis. The three omics datasets were integrated and generated as a single network using a machine learning algorithm. Nineteen compounds were screened and predicted their effects on nanotoxicity within the triple-omics network. Results Intracellular reactive oxygen species production, an inflammatory response, and morphological activation of cells were greater, but glucose uptake was lower in MNPs@SiO2(RITC)-treated BV2 microglia and primary rat microglia in a dose-dependent manner. Expression of 121 genes (from 41,214 identified genes), and levels of 45 proteins (from 5918 identified proteins) and 17 metabolites (from 47 identified metabolites) related to the above phenomena changed in MNPs@SiO2(RITC)-treated microglia. A combination of glutathione and citrate attenuated nanotoxicity induced by MNPs@SiO2(RITC) and ten other nanoparticles in vitro and in the murine brain, protecting mostly the hippocampus and thalamus. Conclusions Combination of glutathione and citrate can be one of the candidates for nanotoxicity alleviating drug against MNPs@SiO2(RITC) induced detrimental effect, including elevation of intracellular reactive oxygen species level, activation of microglia, and reduction in glucose uptake efficiency. In addition, our findings indicate that an integrated triple omics approach provides useful and sensitive toxicological assessment for nanoparticles and screening of drug for nanotoxicity. Graphical Abstract


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1432
Author(s):  
Sandra Sakalauskaite ◽  
Deimante Vasiliauske ◽  
Emilija Demikyte ◽  
Rimantas Daugelavicius ◽  
Martynas Lelis

The beneficial photocatalytic properties of UV light activated TiO2 powder are well-known and have been demonstrated with various pollutants and pathogens. However, traditionally observed photocatalytic activity of visible light activated pristine TiO2 is insignificant but there are a few studies which have reported that under some specific conditions commercially available TiO2 powder could at least partially disinfect microorganisms even under visible light. To better understand this phenomenon, in the current study we focused on bacteria response to the treatment by visible light and P25 TiO2 powder. More specifically, we analyzed the relationship between the bacteria viability, outer membrane permeability, metabolism, and its capacity to generate intracellular reactive oxygen species. During the study we assayed the viability of treated bacteria by the spread plate technique and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction method. Changes in bacterial outer membrane permeability were determined by measuring the fluorescence of N-phenyl-1-naphthylamine (NPN). To detect intracellular reactive oxygen species formation, the fluorescence of dichlorodihydrofluorescein diacetate (DCFH-DA) was assayed. Results of our study indicated that TiO2 and wide spectrum visible light irradiation damaged the integrity of the outer membrane and caused oxidative stress in the metabolizing bacteria. When favorable conditions were created, these effects added up and unexpectedly high bacterial inactivation was achieved.


2021 ◽  
Author(s):  
Junhao Zhu ◽  
Chao Tang ◽  
Zixiang Cong ◽  
Feng Yuan ◽  
Xiangming Cai ◽  
...  

Dopamine agonist (DA) is the first choice for the treatment of prolactinomas and drug resistance is unavoidable during treatment due to the heterogeneity of tumors. The two prolactinoma cell lines (GH3 cells and MMQ cells) were found to have different sensitivity and responding modes to the cabergoline (CAB) and bromocriptine (BRC). In this research, we disclosed the capability of ACT001, a derivative of parthenolide analogues, to activate AMPK by increasing the intracellular reactive oxygen species (ROS) level and AMP/ATP ratio to reverse DA-resistance through dual pathways in prolactinoma cells. The results indicated that ACT001 could reverse the CAB-resistance in GH3 cells by inhibiting the mTOR signaling pathway mainly inducing cell death through autophagy and reverse the BRC-resistance in MMQ cells by activating the EGR1 signaling pathway mainly inducing cell death through apoptosis. Our results suggested that ACT001 is a promising therapeutic compound for treating DA-resistant prolactinomas.


Author(s):  
He Zhang ◽  
Xingxing Han ◽  
Zhaosong Wang ◽  
Zhiyong Wang ◽  
Yanfen Cui ◽  
...  

ATP-binding cassette (ABC) transporter family are major contributors to the drug resistance establishment of breast cancer cells. Breast cancer resistant protein (BCRP), one of the ABC transporters, has long been recognized as a pump that effluxes the therapeutic drugs against the concentration gradient. However, recent studies suggest that the biological function of BCRP is not limited in its drug pump activity. Herein, the role of BCRP in the proliferation and survival of drug-resistant breast cancer cells was investigated. We found that BCRP is not the major drug pump to efflux epirubicin in the resistant cells that express multiple ABC transporters. Silencing of BCRP significantly impairs cell proliferation and induces apoptosis of the resistant cells in vitro and in vivo. RNA-sequencing and high-throughput proteomics suggest that BCRP is an inhibitory factor of oxidative phosphorylation (OXPHOS). Further research suggests that BCRP is localized in the mitochondria of the resistant cells. Knockdown of BCRP elevated the intracellular reactive oxygen species level and eventually promotes the cell to undergo apoptosis. This study demonstrated that BCRP exerts important onco-promoting functions in the drug-resistant breast cancer cells independent of its well-recognized drug efflux activity, which shed new light on understanding the complex functional role of ABC transporters in drug-resistant cells.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1311
Author(s):  
Guohui Li ◽  
Wenxuan Fu ◽  
Yu Deng ◽  
Yunying Zhao

The calcium/calcineurin signalling pathway is required for cell survival under various environmental stresses. Using Saccharomyces cerevisiae, we explored the mechanism underlying calcium-regulated homeostasis of intracellular reactive oxygen species (ROS). We found that deletion of acyltransferase Akr1 and C-5 sterol desaturase Erg3 increased the intracellular ROS levels and cell death, and this could be inhibited by the addition of calcium. The hexose transporter Hxt1 and the amino acid permease Agp1 play crucial roles in maintaining intracellular ROS levels, and calcium induced the expression of the HXT1 and AGP1 genes. The cytosolic calcium concentration was decreased in both the akr1Δ and erg3Δ mutants relative to wild-type cells, potentially lowering basal expression of HXT1 and AGP1. Moreover, the calcium/calcineurin signalling pathway also induced the expression of AKR1 and ERG3, indicating that Akr1 and Erg3 might perform functions that help yeast cells to survive under high calcium concentrations. Our results provided mechanistic insight into how calcium regulated intracellular ROS levels in yeast.


2021 ◽  
Vol 14 (7) ◽  
pp. 679
Author(s):  
Chuda Chittasupho ◽  
Taepin Junmahasathien ◽  
Jiratchaya Chalermmongkol ◽  
Raksakul Wongjirasakul ◽  
Phuriwat Leesawat ◽  
...  

Oxidative stress can cause several severe ophthalmological diseases. In this study, we developed a thermosensitive gel as a delivery system for two antioxidant substances, namely, quercetin and epigallocatechin gallate. The quercetin was loaded in the PLGA nanoparticles using a solvent displacement method. The physical and chemical stability of the quercetin nanoparticles were evaluated, and the degradation kinetics of the quercetin in the nanoparticles was investigated. The in vitro antioxidant and intracellular reactive oxygen species inhibition of the quercetin nanoparticles, combined with the epigallocatechin gallate (EGCG), were determined using a 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and a 2,7-dichlorodihydrofluorescein fluorescent probes, respectively. The thermosensitive gel loaded with the quercetin nanoparticles and EGCG was formulated. We confirmed that quercetin nanoparticles displayed the desired physical characteristics, release kinetics, and stability. The combination of quercetin nanoparticles and EGCG suggested the additive effect of antioxidant activity. We also demonstrated the superior intracellular ROS inhibition activity of the quercetin nanoparticles and EGCG with n-acetyl cysteine. The thermosensitive gel showed an appropriate gelation temperature and time for ocular drug delivery. Our results provide promising prospects for applying the thermosensitive gel loaded with quercetin nanoparticles and EGCG as an efficient drug delivery system for antioxidant activity in human corneal epithelial cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ge Zhang ◽  
He Chen ◽  
Yifan Guo ◽  
Wei Zhang ◽  
Qiuyu Jiang ◽  
...  

Patients with Crohn’s disease (CD) are inclined to have platelet hyperactivity and an increased risk of intestinal micro-thrombosis. However, the mechanisms underlying platelet hyperactivity in CD are not well understood. We investigated the assembly of platelet NLRP3 inflammasome in patients with active CD and its correlation with platelet hyperactivity. In this study, Real-time PCR and western blotting analyses uncovered that ASC, NLRP3, and active caspase-1 were significantly upregulated in platelets from patients with active CD compared with healthy subjects. As revealed by flow cytometry (FCM) and ELISA analyses, the levels of interleukin-1β in both serum and isolated platelets were elevated in patients with active CD. Co-immunoprecipitation and immunofluorescence experiments revealed an increased assembly of NLRP3 inflammasome in platelets from patients with active CD. In addition, higher levels of intracellular reactive oxygen species (ROS) were observed in these platelets by FCM. Furthermore, elevated levels of platelet P-selectin exposure and fibrinogen binding were demonstrated in patients with active CD by FCM. They were positively correlated with the protein levels of NLRP3 inflammasome components. Collectively, our results indicate that the ROS-NLRP3 inflammasome-interleukin-1β axis may contribute to platelet hyperactivity in active CD.


Sign in / Sign up

Export Citation Format

Share Document