scholarly journals All-optical synthesis of an arbitrary linear transformation using diffractive surfaces

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Onur Kulce ◽  
Deniz Mengu ◽  
Yair Rivenson ◽  
Aydogan Ozcan

AbstractSpatially-engineered diffractive surfaces have emerged as a powerful framework to control light-matter interactions for statistical inference and the design of task-specific optical components. Here, we report the design of diffractive surfaces to all-optically perform arbitrary complex-valued linear transformations between an input (Ni) and output (No), where Ni and No represent the number of pixels at the input and output fields-of-view (FOVs), respectively. First, we consider a single diffractive surface and use a matrix pseudoinverse-based method to determine the complex-valued transmission coefficients of the diffractive features/neurons to all-optically perform a desired/target linear transformation. In addition to this data-free design approach, we also consider a deep learning-based design method to optimize the transmission coefficients of diffractive surfaces by using examples of input/output fields corresponding to the target transformation. We compared the all-optical transformation errors and diffraction efficiencies achieved using data-free designs as well as data-driven (deep learning-based) diffractive designs to all-optically perform (i) arbitrarily-chosen complex-valued transformations including unitary, nonunitary, and noninvertible transforms, (ii) 2D discrete Fourier transformation, (iii) arbitrary 2D permutation operations, and (iv) high-pass filtered coherent imaging. Our analyses reveal that if the total number (N) of spatially-engineered diffractive features/neurons is ≥Ni × No, both design methods succeed in all-optical implementation of the target transformation, achieving negligible error. However, compared to data-free designs, deep learning-based diffractive designs are found to achieve significantly larger diffraction efficiencies for a given N and their all-optical transformations are more accurate for N < Ni × No. These conclusions are generally applicable to various optical processors that employ spatially-engineered diffractive surfaces.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Fanwen Meng ◽  
Jacqueline Jonklaas ◽  
Melvin Khee-Shing Leow

Clinicians often encounter thyroid function tests (TFT) comprising serum/plasma free thyroxine (FT4) and thyroid stimulating hormone (TSH) measured using different assay platforms during the course of follow-up evaluations which complicates reliable comparison and interpretation of TFT changes. Although interconversion between concentration units is straightforward, the validity of interconversion of FT4/TSH values from one assay platform to another with different reference intervals remains questionable. This study aims to establish an accurate and reliable methodology of interconverting FT4 by any laboratory to an equivalent FT4 value scaled to a reference range of interest via linear transformation methods. As a proof-of-concept, FT4 was simultaneously assayed by direct analog immunoassay, tandem mass spectrometry and equilibrium dialysis. Both linear and piecewise linear transformations proved relatively accurate for FT4 inter-scale conversion. Linear transformation performs better when FT4 are converted from a more accurate to a less accurate assay platform. The converse is true, whereby piecewise linear transformation is superior to linear transformation when converting values from a less accurate method to a more robust assay platform. Such transformations can potentially apply to other biochemical analytes scale conversions, including TSH. This aids interpretation of TFT trends while monitoring the treatment of patients with thyroid disorders.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Aimin Zhou ◽  
Hongbin Liu ◽  
Shutao Zhang ◽  
Jinyan Ouyang

2007 ◽  
pp. 79-83
Author(s):  
Milica Andjelic

We develop a connection between the eigenvalues of a class of pseudo-linear transformation over a field K and the eigenvalues of a certain linear transformation. We give a new criterion for this class to be diagonalizable over algebraically closed field.


Author(s):  
Yangzhou Chen ◽  
Guangyue Xu ◽  
Jingyuan Zhan

This paper studies the leader-following state consensus problem for heterogeneous linear multi-agent systems under fixed directed communication topologies. First, we propose a consensus protocol consisting of four parts for high-order multi-agent systems, in which different agents are allowed to have different gain matrices so as to increase the degree of design freedom. Then, we adopt a state linear transformation, which is constructed based on the incidence matrix of a directed spanning tree of the communication topology, to equivalently transform the state consensus problem into a partial variable stability problem. Meanwhile, the results of the partial variable stability theory are used to derive a sufficient and necessary consensus criterion, expressed as the Hurwitz stability of a real matrix. Then, this criterion is further expressed as a bilinear matrix inequality condition, and, based on this condition, an iterative algorithm is proposed to find the gain matrices of the protocol. Finally, numerical examples are provided to verify the effectiveness of the proposed protocol design method.


Author(s):  
Yibin Zhang ◽  
Jie Wang ◽  
Jinlong Sun ◽  
Bamidele Adebisi ◽  
Haris Gacanin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document