scholarly journals Trib1 deficiency causes brown adipose respiratory chain depletion and mitochondrial disorder

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Xuelian Zhang ◽  
Bin Zhang ◽  
Chenyang Zhang ◽  
Guibo Sun ◽  
Xiaobo Sun

AbstractTribbles homolog 1 (TRIB1) belongs to the Tribbles family of pseudokinases, which plays a key role in tumorigenesis and inflammation. Although genome-wide analysis shows that TRIB1 expression is highly correlated with blood lipid levels, the relationship between TRIB1 and adipose tissue metabolism remains unclear. Accordingly, the aim of the present study was to explore the role of TRIB1 on mitochondrial function in the brown adipose tissue (BAT). Trib1-knockout mice were established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. The metabolic function of the BAT was induced by a β3-adrenoceptor agonist and the energy metabolism function of mitochondria in the BAT of mice was evaluated. Trib1-knockout mice exhibited obesity and impaired BAT thermogenesis. In particular, Trib1 knockout reduced the ability of the BAT to maintain body temperature, inhibited β3-adrenoceptor agonist-induced thermogenesis, and accelerated lipid accumulation in the liver and adipose tissues. In addition, Trib1 knockout reduced mitochondrial respiratory chain complex III activity, produced an imbalance between mitochondrial fusion and fission, caused mitochondrial structural damage and dysfunction, and affected heat production and lipid metabolism in the BAT. Conversely, overexpression of Trib1 in 3T3-L1 adipocytes increased the number of mitochondria and improved respiratory function. These findings support the role of Trib1 in regulating the mitochondrial respiratory chain and mitochondrial dynamics by affecting mitochondrial function and thermogenesis in the BAT.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3268-3268
Author(s):  
Margaret Nieborowska-Skorska ◽  
Mateusz Koptyra ◽  
Elisabeth Bolton ◽  
Regina Ray ◽  
Danielle Ngaba ◽  
...  

Abstract Abstract 3268 Poster Board III-1 BCR/ABL kinase transforms hematopoietic stem cells to induce chronic myelogenous leukemia (CML). CML in chronic phase (CML-CP) is a leukemia stem cell (LSC)-derived but leukemia progenitor cell (LPC)-driven disease, which is, in most cases, sensitive to ABL tyrosine kinase inhibitors (TKIs) monotherapy. TKIs do not eradicate the leukemia but instead usually render the disease ‘inactive', since the residual quiescent LSCs are intrinsically insensitive to BCR-ABL inhibition and, in a significant cohort of CML patients, LPCs are also refractory or acquire resistance to TKIs due to mutations in BCR/ABL kinase. In the post-imatinib era, these cells may eventually undergo transformation and initiate fatal CML blast crisis (CML-BC). The malignant progression is usually associated with enhanced expression of BCR/ABL and accumulation of additional genetic aberrations, such as TKI-resistant mutations and chromosomal aberrations. In CML-CP, LSCs and LPCs reside in the CD34+CD38- and CD34+CD38+ populations, respectively, whereas in CML-BC, LSCs are also found in the CD34+CD38+ population. In addition, LSCs and LPCs usually belong to quiescent (CFSEmax) and proliferative (CFSElow) populations, respectively. However, the origin of CML-BC clone and the role of BCR/ABL “dosage” are not known. Since genomic instability usually results from DNA damage, we investigated the mechanisms responsible for enhanced DNA damage in CML cells. Much endogenous DNA damage arises from free radicals such as reactive oxygen species (ROS). Here we show that LSCs-enriched CD34+CD38- and quiescent (CFSEmax) CML cells and LPCs-enriched CD34+CD38+ cells contain higher levels of ROS (superoxide anion, hydrogen peroxide, and hydroxyl radical) than corresponding cells from normal donors (CML-BC>CML-CP>Normal). Interestingly, CFSEmax and CFSElow CML cells displayed similar elevation of ROS indicating that the presence of BCR/ABL and not the proliferative status enhances ROS. In addition, total cellular ROS and mitochondrial ROS levels were proportional to the expression of BCR/ABL kinase implicating the role of BCR/ABL kinase “dosage”. Higher levels of ROS caused more oxidative DNA lesions, such as 8-oxoG and DNA double-strand breaks (DSBs) in CD34+ and also in CD34+CD38- CML cells than in normal counterparts (CML-BC>CML-CP>Normal). Inhibition of BCR/ABL kinase with imatinib partially reduced ROS and oxidative DNA damage in CD34+ CML-CP cells, implicating BCR/ABL-dependent and -;independent mechanisms. Our previous studies showed that elevated levels of oxidative DNA damage in BCR/ABL-transformed cells were responsible for accumulation of TKI-resistant BCR/ABL mutants and chromosomal aberrations (Blood, 2006; Leukemia, 2008), highlighting the importance of identification of the sources of ROS in CML. Mitochondrial respiratory chain (MRC) is a major site of ATP production via oxidative phosphorylation, which is associated with electron flux through MRC. Some of the electrons may escape and react with molecular oxygen to form ROS. To shut down MRC, cells were depleted of mitochondrial DNA (mtDNA) by long-term exposure to ethidium bromide in the presence of uridine and pyruvate as confirmed by RT-PCR showing the absence/reduction of mtDNA-coded Cox II gene transcript. The absence of functional MRC reduced the level of ROS by 40% and 20% in CD34+ CML-CP cells and normal counterparts, respectively, suggesting that MRC is an important source of ROS in leukemia cells. Using selective inhibitors of various MRC complexes we identified complex III as major producer of ROS in LSCs and LPCs in CML-CP. The role of complex III in CML-BC cells is somehow diminished in concordance with the observation that prolonged exposure of MRC to elevated levels of ROS results in “mitochondrial injury” and reduction of MRC activity in advanced stages of cancer. In summary, we postulate that BCR/ABL kinase generates ROS and oxidative DNA damage in a dose-dependent manner not only in LPCs-enriched CD34+CD38+ and CFSElow cells, but also in LSCs-enriched CD34+CD38- and CFSEmax cells, and that MRC complex III generates significant amount of ROS in CML-CP cells. Thus, genomic instability causing TKI resistance and progression to CML-BC may originate in LSCs as well as in LPCs. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 27 (14) ◽  
pp. 2161-2171 ◽  
Author(s):  
Charli D. Baker ◽  
Writoban Basu Ball ◽  
Erin N. Pryce ◽  
Vishal M. Gohil

Mitochondrial membrane phospholipid composition affects mitochondrial function by influencing the assembly of the mitochondrial respiratory chain (MRC) complexes into supercomplexes. For example, the loss of cardiolipin (CL), a signature non–bilayer-forming phospholipid of mitochondria, results in disruption of MRC supercomplexes. However, the functions of the most abundant mitochondrial phospholipids, bilayer-forming phosphatidylcholine (PC) and non–bilayer-forming phosphatidylethanolamine (PE), are not clearly defined. Using yeast mutants of PE and PC biosynthetic pathways, we show a specific requirement for mitochondrial PE in MRC complex III and IV activities but not for their formation, whereas loss of PC does not affect MRC function or formation. Unlike CL, mitochondrial PE or PC is not required for MRC supercomplex formation, emphasizing the specific requirement of CL in supercomplex assembly. Of interest, PE biosynthesized in the endoplasmic reticulum (ER) can functionally substitute for the lack of mitochondrial PE biosynthesis, suggesting the existence of PE transport pathway from ER to mitochondria. To understand the mechanism of PE transport, we disrupted ER–mitochondrial contact sites formed by the ERMES complex and found that, although not essential for PE transport, ERMES facilitates the efficient rescue of mitochondrial PE deficiency. Our work highlights specific roles of non–bilayer-forming phospholipids in MRC function and formation.


2010 ◽  
Vol 391 (3) ◽  
pp. 1348-1351 ◽  
Author(s):  
Zdeněk Drahota ◽  
Marek Vrbacký ◽  
Hana Nůsková ◽  
Ludmila Kazdová ◽  
Václav Zídek ◽  
...  

2009 ◽  
Vol 22 (3) ◽  
pp. 565-573 ◽  
Author(s):  
Alexey G. Kruglov ◽  
Maria A. Andersson ◽  
Raimo Mikkola ◽  
Merja Roivainen ◽  
Laszlo Kredics ◽  
...  

1992 ◽  
Vol 281 (3) ◽  
pp. 709-715 ◽  
Author(s):  
K Veitch ◽  
A Hombroeckx ◽  
D Caucheteux ◽  
H Pouleur ◽  
L Hue

Studies of Langendorff-perfused rat hearts have revealed a biphasic response of the mitochondrial respiratory chain to global ischaemia. The initial effect is a 30-40% increase in the rate of glutamate/malate oxidation after 10 min of ischaemia, owing to an increase in the capacity for NADH oxidation. This effect is followed by a progressive decrease in these oxidative activities as the ischaemia is prolonged, apparently owing to damage to Complex I at a site subsequent to the NADH dehydrogenase component. This damage is exacerbated by reperfusion, which causes a further decrease in Complex I activity and also decreases the activities of the other complexes, most notably of Complex III. Perfusion for up to 1 h with anoxic buffer produced only the increase in NADH oxidase activity, and neither anoxia alone, nor anoxia and reperfusion, caused loss of Complex I activity. Perfusing for 3-10 min with anoxic buffer before 1 h of global ischaemia had a significant protective effect against the ischaemia-induced damage to Complex I.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Christopher Lotz ◽  
Ning Deng ◽  
Jun Zhang ◽  
Yueju Wang ◽  
Chenggong Zong ◽  
...  

The mitochondrial respiratory chain is a collection of five multi-protein complexes, whose unobstructed functionality represents a pivotal element at the crossroads of cell death or survival. However, its molecular composition and stochiometric information remains elusive and the adaptive abilities of the chain remain largely unknown. We employed a quantitative proteomic approach to investigate the hypothesis that cardioprotection against ischemic injury is afforded by a salutary proteomic remodeling of the mitochondrial respiratory chain. The respiratory chain of cardiac mitochondria isolated from wild type (WT) mice and from mice expressing a constitutively active protein kinase Cε (AE-PKCε) were characterized using 15N-stable isotope labeled murine models (SILAM), as well as a label-free method in conjunction with high resolution LC-MS/MS, respectively. Enzymatic function of electron transport chain and the ATP synthase were evaluated (n=7/group); and mitochondrial superoxide production was examined by ESR-spectroscopy (n=3/group). Three novel and important observations are made: (i) five individual respiratory complexes exhibited a molar ratio of 1:1:1.4:1.2:4.5 in the WT-heart; (ii) subunits within the five complexes encoded by the mitochondrial genome were expressed at much lower abundance (p<0.05) than those encoded by the nuclear genome; and (iii) Genetic cardioprotection by AE-PKCε elicited a proteomic remodeling of complex I and III, mitochondria from AE-PKCε exhibited an increased expression of multiple subunits, including the catalytic complex III subunit Cyc1. This finding was accompanied by a preserved complex III activity (p<0.05), as well as tempered superoxide production (p<0.01) subsequent to Ca2+-induced damage. This is the first study documenting a salutary proteomic remodeling of the mitochondrial respiratory machinery in cardioprotection. Quantitative proteomics technology enabled novel information and new insights into mitochondrial biology.


Sign in / Sign up

Export Citation Format

Share Document