abl kinase
Recently Published Documents


TOTAL DOCUMENTS

798
(FIVE YEARS 62)

H-INDEX

70
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Fanjun Li ◽  
Monifa Fahie ◽  
Kaitlyn Gilliam ◽  
Ryan Pham ◽  
Min Chen

Abstract Protein kinases play central roles in cellular regulation by catalyzing the phosphorylation of target proteins. Kinases have inherent structural flexibility allowing them to switch between active and inactive states. Quantitative characterization of kinase conformational dynamics is challenging. Here we used nanopore tweezers to access the conformational dynamics of Abl kinase domain, which was shown to interconvert between two major conformational states where one conformation comprises three sub-states. Analysis of kinase-substrate and kinase-inhibitor interactions uncovered the functional roles of relevant states and enabled the elucidation of the mechanism underlying the catalytic deficiency of an inactive Abl mutant G321V. The energy landscape of Abl kinase was revealed by quantifying the population and transition rates of the conformational states.


Author(s):  
Damilohun Samuel Metibemu ◽  
Oluwatoba Emmanuel Oyeneyin ◽  
Ayorinde Omolara Metibemu ◽  
Olawole Yakubu Adeniran ◽  
Idowu Olaposi Omotuyi

Background: Chronic myelogenous leukaemia (CML) constitutes about 15% of adult leukaemia and is characterized by the overproduction of immature myeloid cells. Methods: In this study, a virtual high throughput screening (vHTS) technique was employed to screen a library of phytochemicals of reported anti-cancer plants. A docking score of -10 kcalmol­1 was used as the cut-off for the selection of phyto-compounds for pharmacophore-based virtual screening. Statistically robust and thoroughly validated QSAR model (R = 0.914, R2 = 0.836, Adjusted R2 = 0.764, LOO-CV= 0.6680) was derived for the inhibition of BCR-ABL kinase domain. Results: The virtual screening, pharmacophore screening, QSAR model and molecular docking techniques applied herein revealed ellagic acid, a polyphenolic compound, as a potential competitive inhibitor of the BCR-ABL kinase domain. Ellagic acid binds to the inactive ABL state and forms similar interactions with key residues within the BCR-ABL Kinase domain as obtained in ponatinib (possesses inhibitory effects on the ABL thr-315I mutant). It forms hydrogen bond interaction with thr-315 residue (the gatekeeper residue). It is not likely to be prone to the various mutations associated with nilotinib because of its small size. Conclusion: The procedure of VHTs, Pharmacophore, QSAR, and molecular docking applied in this study could help in detecting more anti-CML compounds.


3 Biotech ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Fiona C. Rodrigues ◽  
Gangadhar Hari ◽  
K. S. R. Pai ◽  
Akhil Suresh ◽  
Usha Y. Nayak ◽  
...  

AbstractThe human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin’s IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy.


2021 ◽  
Vol 118 (46) ◽  
pp. e2111451118
Author(s):  
Agatha Lyczek ◽  
Benedict-Tilman Berger ◽  
Aziz M. Rangwala ◽  
YiTing Paung ◽  
Jessica Tom ◽  
...  

Protein kinase inhibitors are potent anticancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for chronic myeloid leukemia by 80%, but 22 to 41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, where more than a hundred different mutations have been identified. Some mutations are located near the imatinib-binding site and cause resistance through altered interactions with the drug. However, many resistance mutations are located far from the drug-binding site, and it remains unclear how these mutations confer resistance. Additionally, earlier studies on small sets of patient-derived imatinib resistance mutations indicated that some of these mutant proteins were in fact sensitive to imatinib in cellular and biochemical studies. Here, we surveyed the resistance of 94 patient-derived Abl kinase domain mutations annotated as disease relevant or resistance causing using an engagement assay in live cells. We found that only two-thirds of mutations weaken imatinib affinity by more than twofold compared to Abl wild type. Surprisingly, one-third of mutations in the Abl kinase domain still remain sensitive to imatinib and bind with similar or higher affinity than wild type. Intriguingly, we identified three clinical Abl mutations that bind imatinib with wild type–like affinity but dissociate from imatinib considerably faster. Given the relevance of residence time for drug efficacy, mutations that alter binding kinetics could cause resistance in the nonequilibrium environment of the body where drug export and clearance play critical roles.


Author(s):  
Avin Hawez ◽  
Zhiyi Ding ◽  
Dler Taha ◽  
Raed Madhi ◽  
Milladur Rahman ◽  
...  

AbstractSepsis is associated with exaggerated neutrophil responses although mechanisms remain elusive. The aim of this study was to investigate the role of c-Abelson (c-Abl) kinase in neutrophil extracellular trap (NET) formation and inflammation in septic lung injury. Abdominal sepsis was induced by cecal ligation and puncture (CLP). NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Plasma levels of DNA-histone complexes, interleukin-6 (IL-6) and CXC chemokines were quantified. CLP-induced enhanced phosphorylation of c-Abl kinase in circulating neutrophils. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase in neutrophils but also reduced NET formation in the lung and plasma levels of DNA-histone complexes in CLP mice. Moreover, inhibition of c-Abl kinase decreased CLP-induced lung edema and injury. Administration of GDZ824 reduced CLP-induced increases in the number of alveolar neutrophils. Inhibition of c-Abl kinase also markedly attenuated levels of CXC chemokines in the lung and plasma as well as IL-6 levels in the plasma of septic animals. Taken together, this study demonstrates that c-Abl kinase is a potent regulator of NET formation and we conclude that c-Abl kinase might be a useful target to ameliorate lung damage in abdominal sepsis.


2021 ◽  
pp. 167349
Author(s):  
Tao Xie ◽  
Tamjeed Saleh ◽  
Paolo Rossi ◽  
Darcie Miller ◽  
Charalampos G. Kalodimos

Author(s):  
Rayssa Ribeiro ◽  
Mariana Alves Eloy ◽  
Carla Santana Francisco ◽  
Clara Lirian Javarini ◽  
Gabriela Miranda Ayusso ◽  
...  

Background: Natural products have been universally approached in the research of novel trends useful to detail the essential paths of the life sciences and as a strategy for pharmacotherapeutics. Objective: This work focuses on further modification to the 6-hydroxy-flavanone building block aiming to obtain improved BCR-ABL kinase inhibitors. Methods: Ether derivatives were obtained from Williamson synthesis and triazole from Microwave-assisted click reaction. Chemical structures were finely characterized through IR, 1H and 13C NMR and HRMS. They were tested for their inhibitory activity against BCR-ABL kinase. Results: Two inhibitors bearing a triazole ring as a pharmacophoric bridge demonstrated the strongest kinase inhibition at IC50 value of 364 nM (compound 3j) and 275 nM (compound 3k). Conclusion: 6-hydroxy-flavanone skeleton can be considered as a promising core for BCR-ABL kinase inhibitors.


Author(s):  
Philipe Oliveira Fernandes ◽  
Diego Magno Martins ◽  
Aline de Souza Bozzi ◽  
João Paulo A. Martins ◽  
Adolfo Henrique de Moraes ◽  
...  

2021 ◽  
Author(s):  
Agatha Lyczek ◽  
Benedict-Tilman Berger ◽  
Aziz M Rangwala ◽  
YiTing Paung ◽  
Jessica Tom ◽  
...  

Protein kinase inhibitors are potent anti-cancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for Chronic Myeloid Leukemia (CML) by 80%, but 22-41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, in which more than a hundred different mutations have been identified. Some mutations are located near the imatinib binding site and cause resistance through altered interactions with the drug. However, many resistance mutations are located far from the drug binding site and it remains unclear how these mutations confer resistance. Additionally, earlier studies on small sets of patient-derived imatinib resistance mutations indicated that some of these mutant proteins were in fact sensitive to imatinib in cellular and biochemical studies (10). Here, we surveyed the resistance of 94 patient-derived Abl kinase domain mutations annotated as disease-relevant or resistance-causing using an engagement assay in live cells. We found that only two-thirds of mutations weaken imatinib affinity by more than two-fold compared to Abl wild type. Surprisingly, one-third of mutations in Abl kinase domain still remain sensitive to imatinib and bind with similar or higher affinity than wild type. Intriguingly, we identified a clinical Abl mutation that binds imatinib with wild type-like affinity but dissociates from imatinib three times faster. Given the relevance of residence time for drug efficacy, mutations that alter binding kinetics could cause resistance in the non-equilibrium environment of the body where drug export and clearance play critical roles.


Sign in / Sign up

Export Citation Format

Share Document