scholarly journals Author Correction: Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Qi Wang ◽  
Yuanfeng Xu ◽  
Rui Lou ◽  
Zhonghao Liu ◽  
Man Li ◽  
...  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Qi Wang ◽  
Yuanfeng Xu ◽  
Rui Lou ◽  
Zhonghao Liu ◽  
Man Li ◽  
...  

2021 ◽  
Vol 551 ◽  
pp. 149390
Author(s):  
Weizhen Meng ◽  
Xiaoming Zhang ◽  
Weiwang Yu ◽  
Ying Liu ◽  
Lu Tian ◽  
...  

2013 ◽  
Vol 88 (12) ◽  
Author(s):  
Y. Chen ◽  
D. L. Bergman ◽  
A. A. Burkov

2018 ◽  
Vol 98 (22) ◽  
Author(s):  
Ciarán Fowley ◽  
Karsten Rode ◽  
Yong-Chang Lau ◽  
Naganivetha Thiyagarajah ◽  
Davide Betto ◽  
...  

2020 ◽  
Vol 102 (8) ◽  
Author(s):  
Shubhankar Roy ◽  
Ratnadwip Singha ◽  
Arup Ghosh ◽  
Arnab Pariari ◽  
Prabhat Mandal

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Wang ◽  
Xuepeng Wang ◽  
Yi-Fan Zhao ◽  
Di Xiao ◽  
Ling-Jie Zhou ◽  
...  

AbstractThe Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial “topological Hall effect”-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.


Sign in / Sign up

Export Citation Format

Share Document