topological materials
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 130)

H-INDEX

24
(FIVE YEARS 10)

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Marc Vila ◽  
Chuang-Han Hsu ◽  
Jose H. Garcia ◽  
L. Antonio Benítez ◽  
Xavier Waintal ◽  
...  

Author(s):  
Thanh Nguyen ◽  
Yoichiro Tsurimaki ◽  
Ricardo Pablo-Pedro ◽  
Grigory Bednik ◽  
Tongtong Liu ◽  
...  

Abstract Topological nodal semimetals are known to host a variety of fascinating electronic properties due to the topological protection of the band-touching nodes. Neutron scattering, despite its power in probing elementary excitations, has not been routinely applied to topological semimetals, mainly due to the lack of an explicit connection between the neutron response and the signature of topology. In this work, we theoretically investigate the role that neutron scattering can play to unveil the topological nodal features: a large magnetic neutron response with spectral non-analyticity can be generated solely from the nodal bands. A new formula for the dynamical structure factor for generic topological nodal metals is derived. For Weyl semimetals, we show that the locations of Weyl nodes, the Fermi velocities and the signature of chiral anomaly can all leave hallmark neutron spectral responses. Our work offers a neutron-based avenue towards probing bulk topological materials.


Author(s):  
Zhiguo Geng ◽  
Huanzhao Lv ◽  
Zhan Xiong ◽  
Yu-Gui Peng ◽  
Zhaojiang Chen ◽  
...  

Abstract The square-root descendants of higher-order topological insulators were proposed recently, whose topological property is inherited from the squared Hamiltonian. Here we present a three-dimensional (3D) square-root-like sonic crystal by stacking the 2D square-root lattice in the normal (z) direction. With the nontrivial intralayer couplings, the opened degeneracy at the K-H direction induces the emergence of multiple acoustic localized modes, i.e., the extended 2D surface states and 1D hinge states, which originate from the square-root nature of the system. The square-root-like higher order topological states can be tunable and designed by optionally removing the cavities at the boundaries. We further propose a third-order topological corner state in the 3D sonic crystal by introducing the staggered interlayer couplings on each square-root layer, which leads to a nontrivial bulk polarization in the z direction. Our work sheds light on the high-dimensional square-root topological materials, and have the potentials in designing advanced functional devices with sound trapping and acoustic sensing.


2021 ◽  
Vol 38 (12) ◽  
pp. 127401
Author(s):  
Qiangwei Yin ◽  
Zhijun Tu ◽  
Chunsheng Gong ◽  
Shangjie Tian ◽  
Hechang Lei

We report two new members of V-based kagome metals CsV6Sb6 and CsV8Sb12. The most striking structural feature of CsV6Sb6 is the V kagome bilayers. For CsV8Sb12, there is an intergrowth of two-dimensional V kagome layers and one-dimensional V chains, and the latter ones lead to the orthorhombic symmetry of this material. Further measurements indicate that these two materials exhibit metallic and Pauli paramagnetic behaviors. More importantly, different from CsV3Sb5, the charge density wave state and superconductivity do not emerge in CsV6Sb6 and CsV8Sb12 when temperature is above 2 K. Small magnetoresistance with saturation behavior and linear field dependence of Hall resistivity at high field and low temperature suggest that the carriers in both materials should be uncompensated with much different concentrations. The discovery of these two new V-based kagome metals sheds light on the exploration of correlated topological materials based on kagome lattice.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bo Peng ◽  
Shuichi Murakami ◽  
Bartomeu Monserrat ◽  
Tiantian Zhang

AbstractDegenerate points/lines in the band structures of crystals have become a staple of the growing number of topological materials. The bulk-boundary correspondence provides a relation between bulk topology and surface states. While line degeneracies of bulk excitations have been extensively characterised, line degeneracies of surface states are not well understood. We show that SnIP, a quasi-one-dimensional van der Waals material with a double helix crystal structure, exhibits topological nodal rings/lines in both the bulk phonon modes and their corresponding surface states. Using a combination of first-principles calculations, symmetry-based indicator theories and Zak phase analysis, we find that two neighbouring bulk nodal rings form doubly degenerate lines in their drumhead-like surface states, which are protected by the combination of time-reversal symmetry $${{{\mathcal{T}}}}$$ T and glide mirror symmetry $${\bar{M}}_{y}$$ M ¯ y . Our results indicate that surface degeneracies can be generically protected by symmetries such as $${{{\mathcal{T}}}}{\bar{M}}_{y}$$ T M ¯ y , and phonons provide an ideal platform to explore such degeneracies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingyue Wang ◽  
Yuxuan Jiang ◽  
Tianhao Zhao ◽  
Zhiling Dun ◽  
Anna L. Miettinen ◽  
...  

AbstractThe identification of a non-trivial band topology usually relies on directly probing the protected surface/edge states. But, it is difficult to achieve electronically in narrow-gap topological materials due to the small (meV) energy scales. Here, we demonstrate that band inversion, a crucial ingredient of the non-trivial band topology, can serve as an alternative, experimentally accessible indicator. We show that an inverted band can lead to a four-fold splitting of the non-zero Landau levels, contrasting the two-fold splitting (spin splitting only) in the normal band. We confirm our predictions in magneto-transport experiments on a narrow-gap strong topological insulator, zirconium pentatelluride (ZrTe5), with the observation of additional splittings in the quantum oscillations and also an anomalous peak in the extreme quantum limit. Our work establishes an effective strategy for identifying the band inversion as well as the associated topological phases for future topological materials research.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Zhang ◽  
Fang Fang ◽  
Lixin Cheng ◽  
Huiming Lin ◽  
Kai Wang

With the development of computer technology and theoretical chemistry, the speed and accuracy of first-principles calculations have significantly improved. Using first-principles calculations to predict new topological materials is a hot research topic in theoretical and computational chemistry. In this work, we focus on a well-known material, sodium chloride (NaCl), and propose that the triple point (TP), quadratic contact triple point (QCTP), linear and quadratic nodal lines can be found in the phonon dispersion of NaCl with Fm3¯ m type structure. More importantly, we propose that the clear surface states connected to the projected TP and QCTP are visible on the (001) surface. It is hoped that further experimental investigation and verification for these properties as mentioned above.


Sign in / Sign up

Export Citation Format

Share Document