scholarly journals Nucleosome positioning stability is a modulator of germline mutation rate variation across the human genome

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Cai Li ◽  
Nicholas M. Luscombe
2018 ◽  
Author(s):  
Cai Li ◽  
Nicholas M. Luscombe

AbstractUnderstanding the patterns and genesis of germline de novo mutations is important for studying genome evolution and human diseases. Nucleosome organization is suggested to be a contributing factor to mutation rate variation across the genome. However, the small number of published de novo mutations and the low resolution of earlier nucleosome maps limited our understanding of how nucleosome organization affects germline mutation rates in the human genome. Here, we systematically investigated the relationship between nucleosome organization and fine-scale mutation rate variation by analyzing >300,000 de novo mutations from whole-genome trio sequencing and high-resolution nucleosome maps in human. We found that de novo mutation rates are elevated around strong, translationally stable nucleosomes, a previously under-appreciated aspect. We confirmed this observation having controlled for local sequence context and other potential confounding factors. Analysis of the underlying mutational processes suggests that the increased mutation rates around strong nucleosomes are shaped by a combination of low-fidelity replication, frequent DNA damage and insufficient/error-prone repair in these regions. Interestingly, strong nucleosomes are preferentially located in young SINE/LINE elements, implying frequent nucleosome re-positioning (i.e. shifting of dyad position) and their contribution to hypermutation at new retrotransposons during evolution. These findings provide novel insights into how chromatin organization affects germline mutation rates and have important implications in human genetics and genome evolution.


1994 ◽  
Vol 8 (2) ◽  
pp. 162-170 ◽  
Author(s):  
Darren G. Monckton ◽  
Rita Neumann ◽  
Tara Guram ◽  
Neale Fretwell ◽  
Keiji Tamaki ◽  
...  

2007 ◽  
Vol 8 (11) ◽  
pp. 902-902
Author(s):  
Charles F. Baer ◽  
Michael M. Miyamoto ◽  
Dee R. Denver

PLoS Biology ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. e3000191 ◽  
Author(s):  
Long Wang ◽  
Yilun Ji ◽  
Yingwen Hu ◽  
Huaying Hu ◽  
Xianqin Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document