repeat array
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 96
Author(s):  
Dimitrios Konstantonis ◽  
Kyriaki Kekou ◽  
Petros Papaefthymiou ◽  
Heleni Vastardis ◽  
Nikoleta Konstantoni ◽  
...  

Background: Facioscapulohumeral muscular dystrophy is the third most commonly found type of muscular dystrophy. The aim of this study was to correlate the D4Z4 repeat array fragment size to the orofacial muscle weakening exhibited in a group of patients with a genetically supported diagnosis of FSHD. Methods: Molecular genetic analysis was performed for 52 patients (27 female and 25 male) from a group that consisted of 36 patients with autosomal dominant pedigrees and 16 patients with either sporadic or unknown family status. The patients were tested with the southern blotting technique, using EcoRI/Avrll double digestion, and fragments were detected by a p13E-11 telomeric probe. Spearman’s correlation was used to compare the fragment size with the degree of muscle weakening found in the forehead, periocular and perioral muscles. Results: A positive non-significant correlation between the DNA fragment size and severity of muscle weakness was found for the forehead (r = 0.27; p = 0187), the periocular (r = 0.24; p = 0.232) and the left and right perioral (r = 0.29; p = 0.122), (r = 0.32; p = 0.085) muscles. Conclusions: Although FSHD patients exhibited a decrease in muscular activity related to the forehead, perioral, and periocular muscles the genotype–phenotype associations confirmed a weak to moderate non-significant correlation between repeat size and the severity of muscle weakness. Orofacial muscle weakening and its association with a D4Z4 contraction alone may not have the significance to serve as a prognostic biomarker, due to the weak to moderate association. Further studies with larger sample sizes are needed to determine the degree of genetic involvement in the facial growth in FSHD patients.


2021 ◽  
Author(s):  
M. Anwar Iqbal ◽  
Ulrich Broeckel ◽  
Brynn Levy ◽  
Steven Skinner ◽  
Nikhil Shri Sahajpal ◽  
...  

Background The standard of care (SOC) cytogenetic testing methods, such as chromosomal microarray (CMA) and Fragile-X syndrome (FXS) testing, have been employed for the detection of copy number variations (CNVs), and tandem repeat expansions/contractions that contribute towards a sizable portion of genetic abnormalities in constitutional disorders. However, CMA is unable to detect balanced structural variations (SVs) or determine the precise location or orientation of copy number gains. Karyotyping, albeit with lower resolution, has been used for the detection of balanced SVs. Other molecular methods such as PCR and Southern blotting, either simultaneously or in a tiered fashion have been used for FXS testing, adding time, cost, and complexity to reach an accurate diagnosis in affected individuals. Optical genome mapping (OGM), innovative technology in the cytogenomics arena enables a direct, high-resolution view of ultra-long DNA molecules (>150 kbp), which are then assembled de novo to detect germline SVs ranging from 500 bp insertions and deletions to complex chromosomal rearrangements. The purpose of this study was to evaluate the performance of OGM in comparison to the current SOC methods and assess the intra- and inter-site reproducibility of the OGM technique. We report the largest retrospective dataset to date on OGM performed at five laboratories (multi-site) to assess the robustness, QC performance, and analytical validation (multi-operator, and multi-instrument) in detecting SVs and CNVs associated with constitutional disorders compared to SOC technologies. Methods This multi-center IRB-approved, double-blinded, study includes a total of 331 independent flow cells run (including replicates), representing 202 unique retrospective samples, including but not limited to pediatric-onset neurodevelopmental disorders. This study included affected individuals with either a known genetic abnormality or no known genetic diagnosis. Control samples (n=42) were also included. Briefly, OGM was performed on either peripheral blood samples or cell lines using the Saphyr system. The OGM assay results were compared to the human reference genome (GRCh38) to detect different types of SVs (CNV, insertions, inversions, translocations). A unique coverage-based CNV calling algorithm was also used to complement the SV calls. Analysis of heterozygous SVs was performed to assess the absence of heterozygosity (AOH) regions in the genome. For specific clinical indications of FSHD1 and FXS, the EnFocus FXS and FSHD1 tools were used to generate the region-specific reports. OGM data was analyzed and visualized using Access software (version 1.7), where the SVs were filtered using an OGM specific internal control database. The samples were analyzed by laboratory analysts at each site in a blinded fashion using ACMG guidelines for SV interpretation and further reviewed by expert geneticists to assess concordance with SOC testing results. Results Of the first 331 samples run between five sites, 99.1% of sample runs were completed successfully. Of the 331 datasets, 219 were assessed for concordance by the time of this publication; these were samples that harbored known variants, of which 214/219 were detected by OGM resulting in a concordance of 97.7% compared to SOC testing. 47 samples were also run in intra- and inter-site replicate and showed 100% concordance for pathogenic CNVs and SVs and 100% concordance for pathogenic FMR1 repeat expansions. Conclusion The results from this study demonstrate the potential of OGM as an alternative to existing SOC methods in detecting SVs of clinical significance in constitutional postnatal genetic disorders. The outstanding technical performance of OGM across multiple sites demonstrates the robustness and reproducibility of the OGM technique as a rapid cytogenomics testing tool. Notably, OGM detected all classes of SVs in a single assay, which allows for a faster result in cases with diverse and heterogeneous clinical presentations. OGM demonstrated 100% concordance for pathogenic variants previously identified including FMR1 repeat expansions (full mutation range), pathogenic D4Z4 repeat contractions (FSHD1 cases), aneuploidies, interstitial deletions, interstitial duplications, intragenic deletions, balanced translocations, and inversions. Based on our large dataset and high technical performance we recommend OGM as an alternative to the existing SOC tests for the rapid detection and diagnosis of postnatal constitutional disorders.


2021 ◽  
Author(s):  
Astrid Lancrey ◽  
Alexandra Joubert ◽  
Evelyne Duvernois-Berthet ◽  
Etienne Routhier ◽  
Saurabh Raj ◽  
...  

The so-called 601 DNA sequence is often used to constrain the position of nucleosomes on a DNA molecule in vitro. Although the ability of the 147 base pair sequence to precisely position a nucleosome in vitro is well documented, in vivo application of this property has been explored only in a few studies and yielded contradictory conclusions. Our goal in the present study was to test the ability of the 601 sequence to dictate nucleosome positioning in Saccharomyces cerevisiae in the context of a long tandem repeat array inserted in a yeast chromosome. We engineered such arrays with three different repeat size, namely 167, 197 and 237 base pairs. Although our arrays are able to position nucleosomes in vitro as expected, analysis of nucleosome occupancy on these arrays in vivo revealed that nucleosomes are not preferentially positioned as expected on the 601-core sequence along the repeats and that the measured nucleosome repeat length does not correspond to the one expected by design. Altogether our results demonstrate that the rules defining nucleosome positions on this DNA sequence in vitro are not valid in vivo, at least in this chromosomal context, questioning the relevance of using the 601 sequence in vivo to achieve precise nucleosome positioning on designer synthetic DNA sequences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Linde F. Bouwman ◽  
Bianca den Hamer ◽  
Elwin P. Verveer ◽  
Lente J. S. Lerink ◽  
Yvonne D. Krom ◽  
...  

Abstract Background Facioscapulohumeral muscular dystrophy (FSHD) is a skeletal muscle disorder that is caused by derepression of the transcription factor DUX4 in skeletal muscle cells. Apart from SMCHD1, DNMT3B was recently identified as a disease gene and disease modifier in FSHD. However, the exact role of DNMT3B at the D4Z4 repeat array remains unknown. Methods To determine the role of Dnmt3b on DUX4 repression, hemizygous mice with a FSHD-sized D4Z4 repeat array (D4Z4-2.5 mice) were cross-bred with mice carrying an in-frame exon skipping mutation in Dnmt3b (Dnmt3bMommeD14 mice). Additionally, siRNA knockdowns of Dnmt3b were performed in mouse embryonic stem cells (mESCs) derived from the D4Z4-2.5 mouse model. Results In mESCs derived from D4Z4-2.5 mice, Dnmt3b was enriched at the D4Z4 repeat array and DUX4 transcript levels were upregulated after a knockdown of Dnmt3b. In D4Z4-2.5/Dnmt3bMommeD14 mice, Dnmt3b protein levels were reduced; however, DUX4 RNA levels in skeletal muscles were not enhanced and no pathology was observed. Interestingly, D4Z4-2.5/Dnmt3bMommeD14 mice showed a loss of DNA methylation at the D4Z4 repeat array and significantly higher DUX4 transcript levels in secondary lymphoid organs. As these lymphoid organs seem to be more sensitive to epigenetic modifiers of the D4Z4 repeat array, different immune cell populations were quantified in the spleen and inguinal lymph nodes of D4Z4-2.5 mice crossed with Dnmt3bMommeD14 mice or Smchd1MommeD1 mice. Only in D4Z4-2.5/Smchd1MommeD1 mice the immune cell populations were disturbed. Conclusions Our data demonstrates that loss of Dnmt3b results in derepression of DUX4 in lymphoid tissues and mESCs but not in myogenic cells of D4Z4-2.5/Dnmt3bMommeD14 mice. In addition, the Smchd1MommeD1 variant seems to have a more potent role in DUX4 derepression. Our studies suggest that the immune system is particularly but differentially sensitive to D4Z4 chromatin modifiers which may provide a molecular basis for the yet underexplored immune involvement in FSHD.


2020 ◽  
Vol 13 (10) ◽  
pp. dmm046904
Author(s):  
Alec M. DeSimone ◽  
Justin Cohen ◽  
Monkol Lek ◽  
Angela Lek

ABSTRACTFacioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.


2020 ◽  
Vol 12 (11) ◽  
pp. 1965-1974
Author(s):  
Hanhan Xia ◽  
Wei Zhao ◽  
Yong Shi ◽  
Xiao-Ru Wang ◽  
Baosheng Wang

Abstract Short tandem repeats (STRs) contribute to structural variation in plant mitochondrial genomes, but the mechanisms underlying their formation and expansion are unclear. In this study, we detected high polymorphism in the nad7-1 region of the Pinus tabuliformis mitogenome caused by the rapid accumulation of STRs and rearrangements over a few million years ago. The STRs in nad7-1 have a 7-bp microhomology (TAG7) flanking the repeat array. We then scanned the mitogenomes of 136 seed plants to understand the role of microhomology in the formation of STR and mitogenome evolution. A total of 13,170 STRs were identified, and almost half of them were associated with microhomologies. A substantial amount (1,197) of microhomologies was long enough to mediate structural variation, and the length of microhomology is positively correlated with the length of tandem repeat unit. These results suggest that microhomology may be involved in the formation of tandem repeat via microhomology-mediated pathway, and the formation of longer duplicates required greater length of microhomology. We examined the abundance of these 1,197 microhomologies, and found 75% of them were enriched in the plant mitogenomes. Further analyses of the 400 prevalent microhomologies revealed that 175 of them showed differential enrichment between angiosperms and gymnosperms and 186 differed between angiosperms and conifers, indicating lineage-specific usage and expansion of microhomologies. Our study sheds light on the sources of structural variation in plant mitochondrial genomes and highlights the importance of microhomology in mitochondrial genome evolution.


2020 ◽  
Vol 48 (4) ◽  
pp. 1751-1763
Author(s):  
Alexandra D. Gurzau ◽  
Marnie E. Blewitt ◽  
Peter E. Czabotar ◽  
James M. Murphy ◽  
Richard W. Birkinshaw

The structural maintenance of chromosomes hinge domain containing protein 1 (SMCHD1) is a large multidomain protein involved in epigenetic gene silencing. Variations in the SMCHD1 gene are associated with two debilitating human disorders, facioscapulohumeral muscular dystrophy (FSHD) and Bosma arhinia microphthalmia syndrome (BAMS). Failure of SMCHD1 to silence the D4Z4 macro-repeat array causes FSHD, yet the consequences on gene silencing of SMCHD1 variations associated with BAMS are currently unknown. Despite the interest due to these roles, our understanding of the SMCHD1 protein is in its infancy. Most knowledge of SMCHD1 function is based on its similarity to the structural maintenance of chromosomes (SMC) proteins, such as cohesin and condensin. SMC proteins and SMCHD1 share similar domain organisation and affect chromatin conformation. However, there are important differences between the domain architectures of SMC proteins and SMCHD1, which distinguish SMCHD1 as a non-canonical member of the family. In the last year, the crystal structures of the two key domains crucial to SMCHD1 function, the ATPase and hinge domains, have emerged. These structures reveal new insights into how SMCHD1 may bind and regulate chromatin structure, and address how amino acid variations in SMCHD1 may contribute to BAMS and FSHD. Here, we contrast SMCHD1 with canonical SMC proteins, and relate the ATPase and hinge domain structures to their roles in SMCHD1-mediated epigenetic silencing and disease.


2020 ◽  
Vol 21 (6) ◽  
pp. 2221
Author(s):  
Emmanuelle Salort-Campana ◽  
Farzad Fatehi ◽  
Sadia Beloribi-Djefaflia ◽  
Stéphane Roche ◽  
Karine Nguyen ◽  
...  

Molecular defects in type 1 facioscapulohumeral muscular dystrophy (FSHD) are caused by a heterozygous contraction of the D4Z4 repeat array from 1 to 10 repeat units (RUs) on 4q35. This study compared (1) the phenotype and severity of FSHD1 between patients carrying 6–8 vs. 9–10 RUs, (2) the amount of methylation in different D4Z4 regions between patients with FSHD1 with different clinical severity scores (CSS). This cross-sectional multicenter study was conducted to measure functional scales and for genetic analysis. Patients were classified into two categories according to RUs: Group 1, 6–8; Group 2, 9–10. Methylation analysis was performed in 27 patients. A total of 99 carriers of a contracted D4Z4 array were examined. No significant correlations between RUs and CSS (r = 0.04, p = 0.73) and any of the clinical outcome scales were observed between the two groups. Hypomethylation was significantly more pronounced in patients with high CSS (>3.5) than those with low CSS (<1.5) (in DR1 and 5P), indicating that the extent of hypomethylation might modulate disease severity. In Group 1, the disease severity is not strongly correlated with the allele size and is mostly correlated with the methylation of D4Z4 regions.


2020 ◽  
Author(s):  
Sarah Moradi-Fard ◽  
Aditya Mojumdar ◽  
Megan Chan ◽  
Troy A. A. Harkness ◽  
Jennifer A. Cobb

SUMMARYThe ribosomal DNA (rDNA) in Saccharomyces cerevisiae is in one tandem repeat array on Chromosome XII. Two spacer regions within each repetitive element, called non-transcribed spacer 1 (NTS1) and NTS2, are important in nucleolar organization. Smc5/6 localizes to both NTS1 and NTS2 and is involved in the regulation of Sir2 and Cohibin binding at NTS1, whereas Fob1 and Sir2 are required for optimal binding of the complex to NTS1 and NTS2, respectively. We demonstrate that Smc5/6 functions in chromatin silencing at NTS1 independently of its role in homologous recombination (HR) when forks pause at the replication fork barrier (RFB). In contrast, when the complex does not localize to the rDNA in nse3-1 mutants, the shortened lifespan correlates with NTS2 homeostasis independently of FOB1 status. Our data identify the importance of Smc5/6 integrity in NTS2 transcriptional silencing and repeat tethering, which in turn underscores rDNA stability and replicative lifespan.HighlightsSmc5/6 is important for transcriptional silencing in the rDNA.Smc5/6 tethers the rDNA array to the periphery.Transcriptional silencing of ncRNA at NTS1 and NTS2 is differentially regulated.Smc5/6 has a role in rDNA maintenance independent of HR processing at the RFB.Fob1-independent disruption of Smc5/6 at NTS2 leads to lifespan reduction.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Hara ◽  
Miho Terao ◽  
Akari Muramatsu ◽  
Shuji Takada

AbstractGeneration of mutant imprinting control region (ICR) mice using genome editing is an important approach for elucidating ICR functions. IG-DMR is an ICR in the Dlk1-Dio3 imprinted domain that contains functional regions—in both parental alleles—that are essential for embryonic development. One drawback of this approach is that embryonic lethality can occur from aberrant expression of the imprinted genes if IG-DMR gets mutated in either the paternal or maternal allele. To overcome this problem, we generated mosaic mice that contained cells with modified IG-DMR alleles and wild-type cells using the 2CC method that allowed for microinjection of the CRISPR/Cas9 constructs into a blastomere of 2-cell embryos. This method improved the birth rate of the founder pups relative to that obtained using the standard protocol. We also successfully produced mosaic mice in which the tandem repeat array sequence in the IG-DMR had been replaced by homology directed repair. Additionally, paternal transmission of the replaced allele caused aberrant expression of the imprinted genes due to hypomethylation of the IG-DMR, indicating that the replaced allele recapitulated our deletion model. Our results indicate that this method is useful for the generation of mutant mice in which a genomic locus essential for normal development has been genetically edited.


Sign in / Sign up

Export Citation Format

Share Document