local sequence
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 70)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ching-Hsuan Chien ◽  
Lan-Ying Huang ◽  
Shuen-Fang Lo ◽  
Liang-Jwu Chen ◽  
Chi-Chou Liao ◽  
...  

To change the expression of the flanking genes by inserting T-DNA into the genome is commonly used in rice functional gene research. However, whether the expression of a gene of interest is enhanced must be validated experimentally. Consequently, to improve the efficiency of screening activated genes, we established a model to predict gene expression in T-DNA mutants through machine learning methods. We gathered experimental datasets consisting of gene expression data in T-DNA mutants and captured the PROMOTER and MIDDLE sequences for encoding. In first-layer models, support vector machine (SVM) models were constructed with nine features consisting of information about biological function and local and global sequences. Feature encoding based on the PROMOTER sequence was weighted by logistic regression. The second-layer models integrated 16 first-layer models with minimum redundancy maximum relevance (mRMR) feature selection and the LADTree algorithm, which were selected from nine feature selection methods and 65 classified methods, respectively. The accuracy of the final two-layer machine learning model, referred to as TIMgo, was 99.3% based on fivefold cross-validation, and 85.6% based on independent testing. We discovered that the information within the local sequence had a greater contribution than the global sequence with respect to classification. TIMgo had a good predictive ability for target genes within 20 kb from the 35S enhancer. Based on the analysis of significant sequences, the G-box regulatory sequence may also play an important role in the activation mechanism of the 35S enhancer.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1647
Author(s):  
Anastasia A. Anashkina ◽  
Irina Yu. Petrushanko ◽  
Rustam H. Ziganshin ◽  
Yuriy L. Orlov ◽  
Alexei N. Nekrasov

Background: Analyzing the local sequence content in proteins, earlier we found that amino acid residue frequencies differ on various distances between amino acid positions in the sequence, assuming the existence of structural units. Methods: We used informational entropy of protein sequences to find that the structural unit of proteins is a block of adjacent amino acid residues—“information unit”. The ANIS (ANalysis of Informational Structure) method uses these information units for revealing hierarchically organized Elements of the Information Structure (ELIS) in amino acid sequences. Results: The developed mathematical apparatus gives stable results on the structural unit description even with a significant variation in the parameters. The optimal length of the information unit is five, and the number of allowed substitutions is one. Examples of the application of the method for the design of protein molecules, intermolecular interactions analysis, and the study of the mechanisms of functioning of protein molecular machines are given. Conclusions: ANIS method makes it possible not only to analyze native proteins but also to design artificial polypeptide chains with a given spatial organization and, possibly, function.


2021 ◽  
Author(s):  
Jose Roberto Rodrigues ◽  
Scott W Roy ◽  
Ravinder N Sehgal

Avian haemosporidian parasites can cause malaria-like symptoms in their hosts and have been implicated in the demise of some bird species. The newly described Matryoshka RNA viruses (MaRNAV1 and MaRNAV2) infect parasites that in turn infect their vertebrate hosts. MaRNAV2 was the first RNA virus discovered associated with parasites of the genus Leucocytozoon. By analyzing metatranscriptomes from the NCBI SRA database with local sequence alignment tools, we detected two novel RNA viruses; we describe them as MaRNAV3 associated with Leucocytozoon and MaRNAV4 associated with Parahaemoproteus. These had ~40-60% amino acid identity to the RNA-dependent RNA-polymerase (RdRp) of MaRNAV1 and 2, respectively. These findings lead us to hypothesize that MaRNAV_like viruses are widespread and tightly associated with the order Haemosporida since they have been described in human Plasmodium vivax, and now two genera of avian haemosporidians.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodore G. Smith ◽  
Anuli C. Uzozie ◽  
Siyuan Chen ◽  
Philipp F. Lange

AbstractThe local sequence context is the most fundamental feature determining the post-translational modification (PTM) of proteins. Recent technological improvements allow for the detection of new and less prevalent modifications. We found that established state-of-the-art algorithms for the detection of PTM motifs in complex datasets failed to keep up with this technological development and are no longer robust. To overcome this limitation, we developed RoLiM, a new linear motif deconvolution algorithm and webserver, that enables robust and unbiased identification of local amino acid sequence determinants in complex biological systems demonstrated here by the analysis of 68 modifications found across 30 tissues in the human draft proteome map. Furthermore, RoLiM analysis of a large-scale phosphorylation dataset comprising 30 kinase inhibitors of 10 protein kinases in the EGF signalling pathway identified prospective substrate motifs for PI3K and EGFR.


2021 ◽  
Author(s):  
Rachel A. Hoffman ◽  
Heather K. MacAlpine ◽  
David M. MacAlpine

Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin, which extends up to 1 kb from early, efficient replication origins. The CMG holohelicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajesh Sharma ◽  
Kyoung-Jae Choi ◽  
My Diem Quan ◽  
Sonum Sharma ◽  
Banumathi Sankaran ◽  
...  

AbstractExpression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid–liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state.


Genome ◽  
2021 ◽  
Author(s):  
Sakura Hayashi ◽  
Takuji Tsukiyama ◽  
Atsuo Iida ◽  
Masato Kinoshita ◽  
Akihiko Koga

The majority of DNA-based transposable elements comprise autonomous and nonautonomous copies, or only nonautonomous copies, where the autonomous copy contains an intact gene for a transposase protein and the nonautonomous copy does not. Even if autonomous copies coexist, they are generally less frequent. The <i>Tol2</i> element of medaka fish is one of the few elements for which a nonautonomous copy has not yet been found. Here we report the presence of a nonautonomous <i>Tol2</i> copy that was identified by surveying the medaka genome sequence database. This copy contained 3 local sequence alterations that affected the deduced amino acid sequence of the transposase: a deletion of 15 nucleotides resulting in a deletion of 5 amino acids, a base substitution causing a single amino acid change, and another base substitution giving rise to a stop codon. Transposition assays using cultured human cells revealed that the transposase activity was reduced by the 15-nucleotide deletion and abolished by the nonsense mutation. This is the first example of a nonautonomous <i>Tol2</i> copy. Thus, <i>Tol2</i> is in an early stage of decay in the medaka genome, and is therefore a unique element to observe an almost whole decay process that progresses in natural populations.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Georgina E. Menzies ◽  
Ian A. Prior ◽  
Andrea Brancale ◽  
Simon H. Reed ◽  
Paul D. Lewis

Abstract Background Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. Results Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. Conclusions We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Martin Johnsson ◽  
Melissa K. Jungnickel

Abstract Background This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. Results For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. Conclusions Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.


Author(s):  
Aghaee‐Meybodi Esmat ◽  
Nezarat Amin ◽  
Emadi Sima ◽  
Ghaffari Mohammad Reza

Sign in / Sign up

Export Citation Format

Share Document