dna sequence polymorphism
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 5)

H-INDEX

21
(FIVE YEARS 1)

2020 ◽  
Vol 18 (2) ◽  
pp. 124
Author(s):  
Rahayu Kusumaningrum ◽  
Sutopo Sutopo ◽  
Edy Kurnianto

<p class="MDPI17abstract"><strong>Objective: </strong>The objective of this study was to investigate the genetic diversity of Sragen Black Cattle based on D-loop sequences analysis.</p><p class="MDPI17abstract"><strong>Methods: </strong>A total of 25 blood samples belonged to Sragen Black Cattle that had no genetic relationship within sample. The DNA genome was extracted based on the manufacturer’s standard protocol using gSYNC DNA Mini Kit (Geneaid Biotech Ltd.). D-loop gene was amplified using specific primer forward: 5’- TAGTGCTAATACCAACGGCC-3’ and reverse: 5’- AGGCATTTTGAGTGCCTTGC-3’ and then was sequenced. The sequencing result was aligned and analyzed by Molecular Evolutionary Genetics Analysis (MEGA) version 6.0 to reveal genetic distance and phylogenetic tree. Genetic diversity and haplotype were analysed by DNA Sequence Polymorphism (DnaSp) v6.12.03.<strong></strong></p><p class="MDPI17abstract"><strong>Results: </strong>The results revealed that there were 11 haplotypes with Pi = 0.00675±0.00201 and Hd = 0.767±0.086. Sragen Black Cattle was divided by two cluster in phylogenetic tree with average of genetic distance was 0.0032.<strong></strong></p><p class="MDPI17abstract"><strong>Conclusions: </strong>In conclusion, all of Sragen Black Cattle are on the same cluster and have closer genetic relationship to Bos indicus rather than Bos taurus with similarity level 85.76 % based on BLAST program.</p>


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
R. S. Bhat ◽  
J. Rockey ◽  
Kenta Shirasawa ◽  
I. S. Tilak ◽  
M. P. Brijesh Patil ◽  
...  

Abstract Objective Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. Results The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (30,537,376) DNA methylation followed by CpG (30,356,066) and CHH (15,993,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (46,294,063) than the A sub-genome (30,415,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. The genes showing altered methylation and expression between the parent (TMV 2) and its EMS-derived mutant (TMV 2-NLM) were identified. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM) at their epialleles. Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression.


2019 ◽  
Author(s):  
Ramesh S. Bhat ◽  
J. Rockey ◽  
Kenta Shirasawa ◽  
I. S. Tilak ◽  
M. P. Brijesh Patil ◽  
...  

Abstract Objective Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. Results The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (30,537,376) DNA methylation followed by CpG (30,356,066) and CHH (15,993,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (46,294,063) than the A sub-genome (30,415,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. The genes showing altered methylation and expression between the parent (TMV 2) and its EMS-derived mutant (TMV 2-NLM) were identified. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM) at their epialleles. Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression.


2019 ◽  
Author(s):  
Ramesh S. Bhat ◽  
J. Rockey ◽  
Kenta Shirasawa ◽  
I. S. Tilak ◽  
M. P. Brijesh Patil ◽  
...  

Abstract Objective Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. Results The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (3,05,37,376) of DNA methylation followed by CpG (3,03,56,066) and CHH (1,59,93,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (4,62,94,063) than the A sub-genome (3,04,15,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. A few genes showed altered methylation and expression between the parent and its EMS-derived mutant. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM). Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression, indicating the application of these epialleles in peanut breeding.


2017 ◽  
Vol 34 (12) ◽  
pp. 3299-3302 ◽  
Author(s):  
Julio Rozas ◽  
Albert Ferrer-Mata ◽  
Juan Carlos Sánchez-DelBarrio ◽  
Sara Guirao-Rico ◽  
Pablo Librado ◽  
...  

2017 ◽  
Vol 34 (11) ◽  
pp. 3006-3022 ◽  
Author(s):  
Zi-Ming Zhao ◽  
Michael C. Campbell ◽  
Ning Li ◽  
Daniel S.W. Lee ◽  
Zhang Zhang ◽  
...  

2016 ◽  
Vol 54 (5) ◽  
pp. 500-514 ◽  
Author(s):  
Bahram Ahmadi ◽  
Hossein Mirhendi ◽  
Koichi Makimura ◽  
G. Sybren de Hoog ◽  
Mohammad Reza Shidfar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document