scholarly journals A supervised learning framework for chromatin loop detection in genome-wide contact maps

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarik J. Salameh ◽  
Xiaotao Wang ◽  
Fan Song ◽  
Bo Zhang ◽  
Sage M. Wright ◽  
...  
2019 ◽  
Author(s):  
Tarik J. Salameh ◽  
Xiaotao Wang ◽  
Fan Song ◽  
Bo Zhang ◽  
Sage M. Wright ◽  
...  

ABSTRACTAccurately predicting chromatin loops from genome-wide interaction matrices such as Hi-C data is critical to deepen our understanding of proper gene regulation events. Current approaches are mainly focused on searching for statistically enriched dots on a genome-wide map. However, given the availability of a wide variety of orthogonal data types such as ChIA-PET, GAM, SPRITE, and high-throughput imaging, a supervised learning approach could facilitate the discovery of a comprehensive set of chromatin interactions. Here we present Peakachu, a Random Forest classification framework that predicts chromatin loops from genome-wide contact maps. Compared with current enrichment-based approaches, Peakachu identified more meaningful short-range interactions. We show that our models perform well in different platforms such as Hi-C, Micro-C, and DNA SPRITE, across different sequencing depths, and across different species. We applied this framework to systematically predict chromatin loops in 56 Hi-C datasets, and the results are available at the 3D Genome Browser (www.3dgenome.org).


2014 ◽  
Vol 30 (15) ◽  
pp. 2105-2113 ◽  
Author(s):  
Hervé Marie-Nelly ◽  
Martial Marbouty ◽  
Axel Cournac ◽  
Gianni Liti ◽  
Gilles Fischer ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Cyril Matthey-Doret ◽  
Lyam Baudry ◽  
Axel Breuer ◽  
Rémi Montagne ◽  
Nadège Guiglielmoni ◽  
...  

AbstractChromosomes of all species studied so far display a variety of higher-order organisational features, such as self-interacting domains or loops. These structures, which are often associated to biological functions, form distinct, visible patterns on genome-wide contact maps generated by chromosome conformation capture approaches such as Hi-C. Here we present Chromosight, an algorithm inspired from computer vision that can detect patterns in contact maps. Chromosight has greater sensitivity than existing methods on synthetic simulated data, while being faster and applicable to any type of genomes, including bacteria, viruses, yeasts and mammals. Our method does not require any prior training dataset and works well with default parameters on data generated with various protocols.


BMC Genomics ◽  
2008 ◽  
Vol 9 (Suppl 1) ◽  
pp. S6 ◽  
Author(s):  
Qingzhong Liu ◽  
Jack Yang ◽  
Zhongxue Chen ◽  
Mary Qu Yang ◽  
Andrew H Sung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document