3d genome
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 348)

H-INDEX

34
(FIVE YEARS 14)

2022 ◽  
Vol 74 ◽  
pp. 7-12
Author(s):  
Britta A.M. Bouwman ◽  
Nicola Crosetto ◽  
Magda Bienko

2022 ◽  
Vol 12 ◽  
Author(s):  
Brittany Baur ◽  
Da-Inn Lee ◽  
Jill Haag ◽  
Deborah Chasman ◽  
Michael Gould ◽  
...  

Cancer risk by environmental exposure is modulated by an individual’s genetics and age at exposure. This age-specific period of susceptibility is referred to as the “Window of Susceptibility” (WOS). Rats have a similar WOS for developing breast cancer. A previous study in rat identified an age-specific long-range regulatory interaction for the cancer gene, Pappa, that is associated with breast cancer susceptibility. However, the global role of three-dimensional genome organization and downstream gene expression programs in the WOS is not known. Therefore, we generated Hi-C and RNA-seq data in rat mammary epithelial cells within and outside the WOS. To systematically identify higher-order changes in 3D genome organization, we developed NE-MVNMF that combines network enhancement followed by multitask non-negative matrix factorization. We examined three-dimensional genome organization dynamics at the level of individual loops as well as higher-order domains. Differential chromatin interactions tend to be associated with differentially up-regulated genes with the WOS and recapitulate several human SNP-gene interactions associated with breast cancer susceptibility. Our approach identified genomic blocks of regions with greater overall differences in contact count between the two time points when the cluster assignments change and identified genes and pathways implicated in early carcinogenesis and cancer treatment. Our results suggest that WOS-specific changes in 3D genome organization are linked to transcriptional changes that may influence susceptibility to breast cancer.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiting Wang ◽  
Fengling Chen ◽  
Qian Chen ◽  
Xin Wan ◽  
Minglei Shi ◽  
...  

AbstractThe genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development.


2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Kim Philipp Jablonski ◽  
Leopold Carron ◽  
Julien Mozziconacci ◽  
Thierry Forné ◽  
Marc-Thorsten Hütt ◽  
...  

Abstract Background Genome-wide association studies have identified statistical associations between various diseases, including cancers, and a large number of single-nucleotide polymorphisms (SNPs). However, they provide no direct explanation of the mechanisms underlying the association. Based on the recent discovery that changes in three-dimensional genome organization may have functional consequences on gene regulation favoring diseases, we investigated systematically the genome-wide distribution of disease-associated SNPs with respect to a specific feature of 3D genome organization: topologically associating domains (TADs) and their borders. Results For each of 449 diseases, we tested whether the associated SNPs are present in TAD borders more often than observed by chance, where chance (i.e., the null model in statistical terms) corresponds to the same number of pointwise loci drawn at random either in the entire genome, or in the entire set of disease-associated SNPs listed in the GWAS catalog. Our analysis shows that a fraction of diseases displays such a preferential localization of their risk loci. Moreover, cancers are relatively more frequent among these diseases, and this predominance is generally enhanced when considering only intergenic SNPs. The structure of SNP-based diseasome networks confirms that localization of risk loci in TAD borders differs between cancers and non-cancer diseases. Furthermore, different TAD border enrichments are observed in embryonic stem cells and differentiated cells, consistent with changes in topological domains along embryogenesis and delineating their contribution to disease risk. Conclusions Our results suggest that, for certain diseases, part of the genetic risk lies in a local genetic variation affecting the genome partitioning in topologically insulated domains. Investigating this possible contribution to genetic risk is particularly relevant in cancers. This study thus opens a way of interpreting genome-wide association studies, by distinguishing two types of disease-associated SNPs: one with an effect on an individual gene, the other acting in interplay with 3D genome organization.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Li Deng ◽  
Baibai Gao ◽  
Lun Zhao ◽  
Ying Zhang ◽  
Qing Zhang ◽  
...  

Abstract Background The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. Results Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete “transcriptional factory” foci in the evening, linking chromatin architecture to coordinated transcription outputs. Conclusion Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.


2021 ◽  
Author(s):  
Huating WANG ◽  
Yu Zhao ◽  
Yingzhe Ding ◽  
Liangqiang He ◽  
Yuying Li ◽  
...  

Abstract 3D genome rewiring is known to influence spatiotemporal expression of lineage-specific genes and cell fate transition during stem cell differentiation and aging processes. Yet it is unknown how 3D architecture remodels and orchestrates transcriptional changes during skeletal muscle stem cell (also called satellite cell, SC) activation, proliferation and differentiation course. Here, using in situ Hi-C we comprehensively map the 3D genome topology reorganization at multiscale levels during mouse SC lineage progression and integrate with transcriptional and chromatin signatures to elucidate how 3D genome rewiring dictates gene expression program. Specifically, rewiring at compartment level is most pronounced when SC becomes activated. Striking loss in TAD border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can also form TAD clusters and super-enhancer containing TAD clusters orchestrate stage-specific gene expression during SC early activation. Furthermore, we elucidate 3D chromatin regulation of key transcription factor, PAX7 and identify cis-regulatory elements that are crucial for local chromatin architecture and Pax7 expression. Lastly, 3D genome remodeling is profiled in SCs isolated from naturally aging mice, unveiling that geriatric SCs display a prominent gain in long-range contacts and loss of TAD border insulation. Genome compartmentalization and chromatin looping are evidently altered in aged SC while geriatric SC display a more prominent loss in strength of TAD borders. Together, our results implicate 3D chromatin extensively reorganizes at multiple architectural levels and underpin the transcriptome remodeling during SC lineage development and SC aging.


2021 ◽  
Author(s):  
Ewan Hunter ◽  
Mehrnoush Dizfouli ◽  
Christina Koutsothanasi ◽  
Adam Wilson ◽  
Francisco Coroado Santos ◽  
...  

Unprecedented advantages in cancer treatment with immune checkpoint inhibitors (ICI) remain limited to a subset of patients. Systemic analyses of the regulatory 3D genome architecture linked to individual epigenetics and immunogenetic controls associated with tumour immune evasion mechanisms and immune checkpoint pathways reveals a highly prevalent patient molecular profiles predictive of response to PD-(L)1 immune checkpoint inhibitors. A clinical blood test based on the set of 8 3D genomic biomarkers has been developed and validated on several independent cancer patient cohorts to predict response to PD-(L)1 immune checkpoint inhibition. The predictive 8 biomarker set is derived from prospective observational clinical trials, representing 229 treatments with Pembrolizumab, Atezolizumab, Durvalumab, in diverse indications: melanoma, non-small cell lung, urethral, hepatocellular, bladder, prostate cancer, head and neck, vulvar, colon, breast, bone, brain, lymphoma, larynx cancer, and cervix cancers. The 3D genomic 8 biomarker panel for response to immune checkpoint therapy achieved high accuracy up to 85%, sensitivity of 93% and specificity of 82%. This study demonstrates that a 3D genomic approach could be used to develop a predictive clinical assay for response to PD-(L)1 checkpoint inhibition in cancer patients.


2021 ◽  
Author(s):  
Yu Zhao ◽  
YINGZHE DING ◽  
Liangqiang HE ◽  
Yuying Li ◽  
Xiaona Chen ◽  
...  

3D genome rewiring is known to influence spatiotemporal expression of lineage-specific genes and cell fate transition during stem cell differentiation and aging processes. Yet it is unknown how 3D architecture remodels and orchestrates transcriptional changes during skeletal muscle stem cell (also called satellite cell, SC) activation, proliferation and differentiation course. Here, using in situ Hi-C we comprehensively map the 3D genome topology reorganization at multiscale levels during mouse SC lineage progression and integrate with transcriptional and chromatin signatures to elucidate how 3D genome rewiring dictates gene expression program. Specifically, rewiring at compartment level is most pronounced when SC becomes activated. Striking loss in TAD border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can also form TAD clusters and super-enhancer containing TAD clusters orchestrate stage-specific gene expression during SC early activation. Furthermore, we elucidate 3D chromatin regulation of key transcription factor, PAX7 and identify cis-regulatory elements that are crucial for local chromatin architecture and Pax7 expression. Lastly, 3D genome remodeling is profiled in SCs isolated from naturally aging mice, unveiling that geriatric SCs display a prominent gain in long-range contacts and loss of TAD border insulation. Genome compartmentalization and chromatin looping are evidently altered in aged SC while geriatric SC display a more prominent loss in strength of TAD borders. Together, our results implicate 3D chromatin extensively reorganizes at multiple architectural levels and underpin the transcriptome remodeling during SC lineage development and SC aging.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Ànnia Carré-Simon ◽  
Emmanuelle Fabre

The inability to repair damaged DNA severely compromises the integrity of any organism. In eukaryotes, the DNA damage response (DDR) operates within chromatin, a tightly organized DNA–histone complex in a non-random manner within the nucleus. Chromatin thus orchestrates various cellular processes, including repair. Here, we examine the chromatin landscape before, during, and after the DNA damage, focusing on double strand breaks (DSBs). We study how chromatin is modified during the repair process, not only around the damaged region (in cis), but also genome-wide (in trans). Recent evidence has highlighted a complex landscape in which different chromatin parameters (stiffness, compaction, loops) are transiently modified, defining “codes” for each specific stage of the DDR. We illustrate a novel aspect of DDR where chromatin modifications contribute to the movement of DSB-damaged chromatin, as well as undamaged chromatin, ensuring the mobilization of DSBs, their clustering, and their repair processes. 


Sign in / Sign up

Export Citation Format

Share Document