scholarly journals Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georgette Tanner ◽  
David R. Westhead ◽  
Alastair Droop ◽  
Lucy F. Stead

AbstractIntratumour heterogeneity provides tumours with the ability to adapt and acquire treatment resistance. The development of more effective and personalised treatments for cancers, therefore, requires accurate characterisation of the clonal architecture of tumours, enabling evolutionary dynamics to be tracked. Many methods exist for achieving this from bulk tumour sequencing data, involving identifying mutations and performing subclonal deconvolution, but there is a lack of systematic benchmarking to inform researchers on which are most accurate, and how dataset characteristics impact performance. To address this, we use the most comprehensive tumour genome simulation tool available for such purposes to create 80 bulk tumour whole exome sequencing datasets of differing depths, tumour complexities, and purities, and use these to benchmark subclonal deconvolution pipelines. We conclude that i) tumour complexity does not impact accuracy, ii) increasing either purity or purity-corrected sequencing depth improves accuracy, and iii) the optimal pipeline consists of Mutect2, FACETS and PyClone-VI. We have made our benchmarking datasets publicly available for future use.

2019 ◽  
Vol 35 (16) ◽  
pp. 2850-2852
Author(s):  
Georgette Tanner ◽  
David R Westhead ◽  
Alastair Droop ◽  
Lucy F Stead

Abstract Summary Tumour evolution results in progressive cancer phenotypes such as metastatic spread and treatment resistance. To better treat cancers, we must characterize tumour evolution and the genetic events that confer progressive phenotypes. This is facilitated by high coverage genome or exome sequencing. However, the best approach by which, or indeed whether, these data can be used to accurately model and interpret underlying evolutionary dynamics is yet to be confirmed. Establishing this requires sequencing data from appropriately heterogeneous tumours in which the exact trajectory and combination of events occurring throughout its evolution are known. We therefore developed HeteroGenesis: a tool to generate realistically evolved tumour genomes, which can be sequenced using weighted-Wessim (w-Wessim), an in silico exome sequencing tool that we have adapted from previous methods. HeteroGenesis simulates more complex and realistic heterogeneous tumour genomes than existing methods, can model different evolutionary dynamics, and enables the creation of multi-region and longitudinal data. Availability and implementation HeteroGenesis and w-Wessim are freely available under the GNU General Public Licence from https://github.com/GeorgetteTanner, implemented in Python and supported on linux and MS Windows. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Jennifer D. Hintzsche ◽  
William A. Robinson ◽  
Aik Choon Tan

Whole Exome Sequencing (WES) is the application of the next-generation technology to determine the variations in the exome and is becoming a standard approach in studying genetic variants in diseases. Understanding the exomes of individuals at single base resolution allows the identification of actionable mutations for disease treatment and management. WES technologies have shifted the bottleneck in experimental data production to computationally intensive informatics-based data analysis. Novel computational tools and methods have been developed to analyze and interpret WES data. Here, we review some of the current tools that are being used to analyze WES data. These tools range from the alignment of raw sequencing reads all the way to linking variants to actionable therapeutics. Strengths and weaknesses of each tool are discussed for the purpose of helping researchers make more informative decisions on selecting the best tools to analyze their WES data.


2017 ◽  
Vol 33 (15) ◽  
pp. 2402-2404 ◽  
Author(s):  
Alessandro Romanel ◽  
Tuo Zhang ◽  
Olivier Elemento ◽  
Francesca Demichelis

SoftwareX ◽  
2020 ◽  
Vol 11 ◽  
pp. 100478
Author(s):  
Lucas L. Cendes ◽  
Welliton de Souza ◽  
Iscia Lopes-Cendes ◽  
Benilton S. Carvalho

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0224143 ◽  
Author(s):  
Judith Abécassis ◽  
Anne-Sophie Hamy ◽  
Cécile Laurent ◽  
Benjamin Sadacca ◽  
Hélène Bonsang-Kitzis ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 331-331
Author(s):  
Ah Ram Kim ◽  
Jacob C Ulirsch ◽  
Stephan Wilmes ◽  
Ekrem Unal ◽  
Ignacio Moraga ◽  
...  

Abstract Congenital hypoplastic or Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder characterized by a paucity of red blood cells and their precursors in the bone marrow. The majority of cases of DBA are due to haploinsufficient mutations in ribosomal protein genes and in rare cases result from GATA1 mutations. However, nearly half of the DBA cases do not have an identified genetic etiology. While analyzing whole exome sequencing data from a cohort of over 450 patients with a clinical diagnosis of DBA, we encountered the case of a male child of a first cousin consanguineous union who was diagnosed with DBA as an infant and remained transfusion dependent. The patient responded to corticosteroid therapy for a year as a toddler, but this treatment was discontinued due to side effects. The patient subsequently remained transfusion dependent and at 6 years of age an allogeneic bone marrow transplant from a matched maternal aunt was performed. Surprisingly, despite achievement of robust donor chimerism, the patient remained transfusion dependent. Unfortunately the patient developed severe graft-versus-host disease and died of resultant complications. Both the potential recessive nature of the mutation, given parental consanguinity, and the lack of anemia correction following transplant made this case extremely unusual. Thus we evaluated this patient's whole exome sequencing data. We identified a homozygous recessive mutation in the erythropoietin gene (EPO), which resulted in an R150Q substitution in the mature EPO protein. This mutation was absent from a cohort of 60,706 individuals depleted for Mendelian disease and fit the model of complete penetrance in the family. The R150Q mutation was expected to disrupt the high-affinity binding site to the EPO receptor (EPOR). However, we found by producing recombinant proteins that the EPO R150Q mutation only reduced the EPOR binding affinity by 3-fold. Surprisingly, the patient had an over 100-fold elevation in their serum EPO levels, suggesting that this mutation did not cause disease through altered affinity. Rather we observed altered EPOR binding kinetics by this mutant ligand. There was a slightly increased on-rate with a much faster dissociation rate (t1/2 of 10 seconds for the mutant vs. 6 minutes for the wild type). Using human erythroid cells and primary hematopoietic stem and progenitor cells, we could show that this mutant ligand never reached the same efficacy as the wild type (WT) EPO in promoting erythroid differentiation and proliferation. To better characterize this abnormal activity, we examined downstream signaling responses. We found identical phosphorylation of STAT5 at maximally potent concentrations of the WT (1 nM) and R150Q mutant (100 nM) EPO. By surveying a broad array of >120 phosphorylation events using intracellular flow cytometry, we demonstrated that maximal levels of STAT3 and STAT1 phosphorylation were reduced by 30% and 25%, respectively, with the R150Q (100 nM) compared to WT (1 nM) EPO. To determine the mechanistic basis for variation in downstream effector activation by the R150Q mutant ligand, we used inhibitors of both the JAK2 kinase and the SHP1/2 phosphatases that are respectively up- and downstream of STAT phosphorylation. While SHP1/2 inhibition did not alter STAT phosphorylation, JAK2 inhibition by ruxolitinib more potently inhibited STAT1/3 phosphorylation compared to STAT5. Interestingly, treatment with a low dose of ruxolitinib (40 nM) reduced erythroid proliferation to the same extent at maximally potent concentrations of the WT or R150Q EPO, demonstrating that the impairment in signaling by the R150Q EPO was primarily due to reduced JAK2 activity. Finally, we utilized single molecule fluorescent imaging of EPOR dimerization at the intact cell surface to directly show that the kinetically-biased R150Q EPO has a reduced ability to promote productive dimerization as compared to the WT EPO, even at maximally potent concentrations. Collectively, our results demonstrate how the R150Q mutant EPO - the first pathogenic mutation in EPO identified in humans - results in biased agonism of EPOR signaling through reduced receptor dimerization and consequently impaired JAK2 activation. More broadly our findings reveal how variation of cytokine-receptor binding kinetics can be used to tune downstream responses, which has broad implications for modulating the activity of numerous hematopoietic cytokines. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document