scholarly journals Immunoprofiles associated with controlled human malaria infection and naturally acquired immunity identify a shared IgA pre-erythrocytic immunoproteome

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea A. Berry ◽  
Joshua M. Obiero ◽  
Mark A. Travassos ◽  
Amed Ouattara ◽  
Drissa Coulibaly ◽  
...  

AbstractKnowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Joshua M. Obiero ◽  
Joseph J. Campo ◽  
Anja Scholzen ◽  
Arlo Randall ◽  
Else M. Bijker ◽  
...  

ABSTRACTImmunization with sporozoites under chloroquine chemoprophylaxis (CPS) induces distinctly preerythrocytic and long-lasting sterile protection against homologous controlled human malaria infection (CHMI). To identify possible humoral immune correlates of protection, plasma samples were collected from 38 CPS-immunized Dutch volunteers for analysis using a wholePlasmodium falciparumproteome microarray with 7,455 full-length or segmented protein features displaying about 91% of the totalP. falciparumproteome. We identified 548 reactive antigens representing 483 unique proteins. Using the breadth of antibody responses for each subject in a mixture-model algorithm, we observed a trimodal pattern, with distinct groups of 16 low responders, 19 medium responders, and 3 high responders. Fifteen out of 16 low responders, 12 of the 19 medium responders, and 3 out of 3 high responders were fully protected from a challenge infection. In the medium-responder group, we identified six novel antigens associated with protection (area under the curve [AUC] value of ≥0.75;P < 0.05) and six other antigens that were specifically increased in nonprotected volunteers (AUC value of ≤0.25;P < 0.05). When used in combination, the multiantigen classifier predicts CPS-induced protective efficacy with 83% sensitivity and 88% specificity. The antibody response patterns characterized in this study represent surrogate markers that may provide rational guidance for clinical vaccine development.IMPORTANCEInfection byPlasmodiumparasites has been a major cause of mortality and morbidity in humans for thousands of years. Despite the considerable reduction of deaths, according to the WHO, over 5 billion people are still at risk, with about 216 million worldwide cases occurring in 2016. More compelling, 15 countries in sub-Saharan Africa bore 80% of the worldwide malaria burden. Complete eradication has been challenging, and the development of an affordable and effective vaccine will go a long way in achieving elimination. However, identifying vaccine candidate targets has been difficult. In the present study, we use a highly effective immunization protocol that confers long-lasting sterile immunity in combination with a wholeP. falciparumproteome microarray to identify antibody responses associated with protection. This study characterizes a novel antibody profile associated with sterile protective immunity and trimodal humoral responses that sheds light on the possible mechanism of CPS-induced immunity againstP. falciparumparasites.


2021 ◽  
Vol 4 ◽  
Author(s):  
William Chad Young ◽  
Lindsay N. Carpp ◽  
Sidhartha Chaudhury ◽  
Jason A. Regules ◽  
Elke S. Bergmann-Leitner ◽  
...  

RTS,S/AS01 (GSK) is the world’s first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development. In two recent controlled human malaria infection (CHMI) trials of the RTS,S/AS01 vaccine in malaria-naïve adults, MAL068 and MAL071, vaccine efficacy against patent parasitemia ranged from 44% to 87% across studies and arms (each study included a standard RTS,S/AS01 arm with three vaccine doses delivered in four-week-intervals, as well as an alternative arm with a modified version of this regimen). In each trial, RTS,S/AS01 immunogenicity was interrogated using a broad range of immunological assays, assessing cellular and humoral immune parameters as well as gene expression. Here, we used a predictive modeling framework to identify immune biomarkers measured at day-of-challenge that could predict sterile protection against malaria infection. Using cross-validation on MAL068 data (either the standard RTS,S/AS01 arm alone, or across both the standard RTS,S/AS01 arm and the alternative arm), top-performing univariate models identified variables related to Fc effector functions and titer of antibodies that bind to the central repeat region (NANP6) of CSP as the most predictive variables; all NANP6-related variables consistently associated with protection. In cross-study prediction analyses of MAL071 outcomes (the standard RTS,S/AS01 arm), top-performing univariate models again identified variables related to Fc effector functions of NANP6-targeting antibodies as highly predictive. We found little benefit–with this dataset–in terms of improved prediction accuracy in bivariate models vs. univariate models. These findings await validation in children living in malaria-endemic regions, and in vaccinees administered a fourth RTS,S/AS01 dose. Our findings support a “quality as well as quantity” hypothesis for RTS,S/AS01-elicited antibodies against NANP6, implying that malaria vaccine clinical trials should assess both titer and Fc effector functions of anti-NANP6 antibodies.


2021 ◽  
Author(s):  
Joana Carneiro Silva ◽  
Ankit Dwivedi ◽  
Kara A Moser ◽  
Mahamadou S. Sissoko ◽  
Judith E. Epstein ◽  
...  

Controlled human malaria infection (CHMI) has supported Plasmodium falciparum (Pf) malaria vaccine development by providing preliminary estimates of vaccine efficacy (VE). Because CHMIs generally use Pf strains similar to vaccine strains, VE against antigenically heterogeneous Pf in the field has been required to establish VE. We increased the stringency of CHMI by selecting a Brazilian isolate, Pf7G8, which is genetically distant from the West African parasite (PfNF54) in our PfSPZ vaccines. Using two regimens to identically immunize US and Malian adults, VE over 24 weeks in the field was as good as or better than against CHMI at 24 weeks in the US. To explain this finding, we quantified differences in the genome, proteome and predicted CD8 T cell epitopes of PfNF54 relative to 709 Pf isolates from Africa and Pf7G8. Pf7G8 is more distant from PfNF54 than any African isolates tested. We propose VE against Pf7G8 CHMI for providing pivotal data for malaria vaccine licensure for travelers to Africa, and potentially for endemic populations, because the genetic distance of Pf7G8 from the Pf vaccine strain makes it a stringent surrogate for Pf parasites in Africa.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jona Walk ◽  
L. Charlotte J. de Bree ◽  
Wouter Graumans ◽  
Rianne Stoter ◽  
Geert-Jan van Gemert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document