controlled human malaria infection
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 56)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Joana Carneiro Silva ◽  
Ankit Dwivedi ◽  
Kara A Moser ◽  
Mahamadou S. Sissoko ◽  
Judith E. Epstein ◽  
...  

Controlled human malaria infection (CHMI) has supported Plasmodium falciparum (Pf) malaria vaccine development by providing preliminary estimates of vaccine efficacy (VE). Because CHMIs generally use Pf strains similar to vaccine strains, VE against antigenically heterogeneous Pf in the field has been required to establish VE. We increased the stringency of CHMI by selecting a Brazilian isolate, Pf7G8, which is genetically distant from the West African parasite (PfNF54) in our PfSPZ vaccines. Using two regimens to identically immunize US and Malian adults, VE over 24 weeks in the field was as good as or better than against CHMI at 24 weeks in the US. To explain this finding, we quantified differences in the genome, proteome and predicted CD8 T cell epitopes of PfNF54 relative to 709 Pf isolates from Africa and Pf7G8. Pf7G8 is more distant from PfNF54 than any African isolates tested. We propose VE against Pf7G8 CHMI for providing pivotal data for malaria vaccine licensure for travelers to Africa, and potentially for endemic populations, because the genetic distance of Pf7G8 from the Pf vaccine strain makes it a stringent surrogate for Pf parasites in Africa.


2021 ◽  
Author(s):  
Maxmillian Gideon Mpina ◽  
Thomas C Stabler ◽  
Tobias Schindler ◽  
Jose Raso Bijeri ◽  
Anna Deal ◽  
...  

Abstract BackgroundProgress towards malaria elimination has stagnated, partly because infections persisting at low parasite densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. We compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria exposed adults (NCT03590340). MethodsBlood samples were collected from healthy Equatoguineans aged 18-35 years beginning on day 8 after CHMI with 3.2x103 cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (PfSPZ Challenge, strain NF54) administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (AlereTM Malaria Ag P.f.), cRDT (Carestart Malaria Pf/PAN (PfHRP2/pLDH)), and TBS were performed daily until the volunteer became TBS positive and treatment was administered. qPCR was the reference for the presence of Pf parasites. Results279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% sensitivity [95% CI 13.1% – 27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1% – 25.1%], cRDT 10/123 (8.1% sensitivity [95% CI 4.2% – 14.8%]; all were 100% specific. qPCR was the most sensitive test (p<0.001); TBS and uRDT were more sensitive than cRDT (TBS vs. cRDT p=0.015; uRDT vs. cRDT p=0.053), detecting parasitemias as low as 3.7 parasites/mL (p/mL) (TBS and uRDT) compared to 5.6 p/mL (cRDT) based on TBS density measurements. TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/mL, the qPCR density corresponding to 3.7 p/mL by TBS. The median prepatent periods in days (ranges) were 14.5 (10-20), 18.0 (15-28), 18.0 (15-20) and 18.0 (16-24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitemia significantly earlier (3.5 days) than the other tests.ConclusionsTBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR for detecting low density parasitemia. uRDT could be considered an alternative to TBS in selected applications such as CHMI or field diagnosis where qualitative, dichotomous results for malaria infection might be sufficient.


JCI Insight ◽  
2021 ◽  
Author(s):  
Angela M. Minassian ◽  
Yrene Themistocleous ◽  
Sarah E. Silk ◽  
Jordan R. Barrett ◽  
Alison Kemp ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aurelie Miglar ◽  
Isaie J. Reuling ◽  
Xi Zen Yap ◽  
Anna Färnert ◽  
Robert W. Sauerwein ◽  
...  

AbstractCellular aging is difficult to study in individuals with natural infection, given the diversity of symptom duration and clinical presentation, and the high interference of aging-related processes with host and environmental factors. To address this challenge, we took advantage of the controlled human malaria infection (CHMI) model. This approach allowed us to characterize the relationship among cellular aging markers prior, during and post malaria pathophysiology in humans, controlling for infection dose, individual heterogeneity, previous exposure and co-infections. We demonstrate that already low levels of Plasmodium falciparum impact cellular aging by inducing high levels of inflammation and redox-imbalance; and that cellular senescence reversed after treatment and parasite clearance. This study provides insights into the complex relationship of telomere length, cellular senescence, telomerase expression and aging-related processes during a single malaria infection.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea A. Berry ◽  
Joshua M. Obiero ◽  
Mark A. Travassos ◽  
Amed Ouattara ◽  
Drissa Coulibaly ◽  
...  

AbstractKnowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256980
Author(s):  
Marvin J. Sklar ◽  
Santina Maiolatesi ◽  
Noelle Patterson ◽  
Martha Sedegah ◽  
Keith Limbach ◽  
...  

Background A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. Methodology This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. Results In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. Conclusions This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kelly E. Seaton ◽  
Rachel L. Spreng ◽  
Milite Abraha ◽  
Matthew Reichartz ◽  
Michelle Rojas ◽  
...  

AbstractRTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens. Central repeat (NANP6) IgG1 magnitude correlated best with protection status in univariate analyses and was the most predictive for protection in a multivariate model. NANP6 IgG3 magnitude, CSP IgG1 magnitude, and total serum antibody dissociation phase area-under-the-curve for NANP6, CSP, NPNA3, and N-interface binding were also associated with protection status in the regimen adjusted univariate analysis. Identification of multiple immune response features that associate with protection status, such as antibody subclasses, fine specificity and avidity reported here may accelerate development of highly efficacious vaccines against P. falciparum.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256396
Author(s):  
Martha Sedegah ◽  
Michael R. Hollingdale ◽  
Harini Ganeshan ◽  
Maria Belmonte ◽  
Jun Huang ◽  
...  

Background Immunization with radiation-attenuated sporozoites (RAS) by mosquito bites provides >90% sterile protection against Plasmodium falciparum malaria in humans. We conducted a clinical trial based on data from previous RAS clinical trials that suggested that 800–1200 infected bites should induce ~50% protective vaccine efficacy (VE) against controlled human malaria infection (CHMI) administered three weeks after the final immunization. Two cohorts were immunized separately. VE was 55% in Cohort 1 but 90% in Cohort 2, the cohort that received a higher first dose and a reduced (fractional) fifth dose. Immune responses were better boosted by the fractional fifth dose in Cohort 2 and suggested the importance of the fractional fifth dose for increased protection in Cohort 2 responses. Three protected subjects were later boosted and were protected suggesting that protection could be extended to at least 67 weeks. Methods The ex vivo FluoroSpot assay was used to measure peripheral IFN-γ, IL2, and IFN-γ+IL2 responses to PfNF54 sporozoites and malaria antigens CSP, AMA1, TRAP, and CelTOS using pools of synthetic overlapping 15mer peptides spanning each antigen. Results There was no correlation between IFN-γ, IL2, and IFN-γ+IL2 responses to sporozoites and protection, but fold-increases between post-4th and post-5th responses greater than 1.0 occurred mostly in protected subjects. IFN-γ and IL2 responses to TRAP, CelTOS and CSP occurred only in protected subjects. Peripheral IFN-γ, IL2, and IFN-γ+IL2 responses were short-lived and low by 27 weeks post-CHMI but were restored by boosting. Conclusions These studies highlight the importance of vaccine dose and schedule for vaccine efficacy, and suggest that CSP, TRAP, AMA1 and CelTOS may be targets of protective immunity. The correlation between fold-increases in responses and protection should be explored in other vaccine trials. Trial registration ClinicalTrials.gov NCT01994525.


2021 ◽  
Author(s):  
Ying Du ◽  
Nina Hertoghs ◽  
Jason Carnes ◽  
Suzanne M. McDermott ◽  
Maxwell L. Neal ◽  
...  

Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development.


Sign in / Sign up

Export Citation Format

Share Document