High-altitude water ice cloud formation on Mars controlled by interplanetary dust particles

2019 ◽  
Vol 12 (7) ◽  
pp. 516-521 ◽  
Author(s):  
V. L Hartwick ◽  
O. B. Toon ◽  
N. G. Heavens
2018 ◽  
Author(s):  
Katherine Burgess ◽  
◽  
David Bour ◽  
Rhonda M. Stroud ◽  
Anais Bardyn ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


2020 ◽  
Vol 183 ◽  
pp. 104527 ◽  
Author(s):  
E. Hadamcik ◽  
J. Lasue ◽  
A.C. Levasseur-Regourd ◽  
J.-B. Renard

1991 ◽  
Vol 126 ◽  
pp. 397-404 ◽  
Author(s):  
S. A. Sandford

AbstractSamples of interplanetary dust particles (IDPs) have now been collected from the stratosphere, from the Earth’s ocean beds, and from the ice caps of Greenland and Antarctica The most likely candidates for the sources of these particles are comets and asteroids. Comparison of the infrared spectra, elemental compositions, and mineralogy of the collected dust with atmospheric entry models and data obtained from cometary probes and telescopic observations has provided important constraints on the possible sources of the various types of collected dust. These constraints lead to the following conclusions. First, most of the deep sea, Greenland, and Antarctic spherules larger than 100 μm are derived from asteroids. Second, the stratospheric IDPs dominated by hydrated layer-lattice silicate minerals are also most likely derived from asteroids. Finally, the stratospheric IDPs dominated by the anhydrous minerals olivine and pyroxene are most likely from comets. The consequences of these parent body assignments are discussed.


Sign in / Sign up

Export Citation Format

Share Document