scholarly journals Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ashwini Sawant ◽  
Mun Seok Choe ◽  
Manfred Thumm ◽  
EunMi Choi
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yung-Chiang Lan ◽  
Chia-Hui Shen ◽  
Chih-Min Chen

Abstract In this work, surface plasmons (SPs) on a germanium (Ge) thin film in terahertz (THz) region that are excited by electron cyclotron motion (ECM) and the subsequent SP emission (SPE) by adding Ge gratings on the film are explored by finite-difference time-domain (FDTD) and particle-in-cell FDTD (PIC-FDTD) simulations. The optical properties of ECM-excited SPs are the same as those of SPs that are excited by electron straight motion (ESM). For operating at the flat band of SPs’ dispersion curve on the Ge film, changing the electron energy will only change the wavevector of SPs and hence the number of periods of SPs on the circular orbital. When the periodic gratings are deposited on the Ge film along the circular orbital of electrons, the emitted SPE contains the orbital angular momentum (OAM). The number of arms and chirality of the spiral patterns in phase map (i.e. the quantum number of OAM) of SPE are determined by the difference between the number of SPs’ periods and the number of gratings. Manipulations of the quantum number of OAM by changing the number of gratings for a fixed electron energy and by changing the electron energy for a fixed number of gratings are also demonstrated. This work provides an active OAM source and it is not required to launch circularly polarized beams or pumping beams into the structure.


Author(s):  
Ryohei Yamagishi ◽  
Hiroto Otsuka ◽  
Ryo Ishikawa ◽  
Akira Saitou ◽  
Hiroshi Suzuki ◽  
...  

2020 ◽  
Vol 117 (19) ◽  
pp. 191101
Author(s):  
Wenpu Geng ◽  
Yiqiao Li ◽  
Yuxi Fang ◽  
Yingning Wang ◽  
Changjing Bao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Zhao ◽  
Runzhou Zhang ◽  
Hao Song ◽  
Kai Pang ◽  
Ahmed Almaiman ◽  
...  

AbstractOrbital-angular-momentum (OAM) multiplexing has been utilized to increase the channel capacity in both millimeter-wave and optical domains. Terahertz (THz) wireless communication is attracting increasing attention due to its broadband spectral resources. Thus, it might be valuable to explore the system performance of THz OAM links to further increase the channel capacity. In this paper, we study through simulations the fundamental system-degrading effects when using multiple OAM beams in THz communications links under atmospheric turbulence. We simulate and analyze the effects of divergence, turbulence, limited-size aperture, and misalignment on the signal power and crosstalk of THz OAM links. We find through simulations that the system-degrading effects are different in two scenarios with atmosphere turbulence: (a) when we consider the same strength of phasefront distortion, faster divergence (i.e., lower frequency; smaller beam waist) leads to higher power leakage from the transmitted mode to neighbouring modes; and (b) however, when we consider the same atmospheric turbulence, the divergence effect tends to affect the power leakage much less, and the power leakage increases as the frequency, beam waist, or OAM order increases. Simulation results show that: (i) the crosstalk to the neighbouring mode remains < − 15 dB for a 1-km link under calm weather, when we transmit OAM + 4 at 0.5 THz with a beam waist of 1 m; (ii) for the 3-OAM-multiplexed THz links, the signal-to-interference ratio (SIR) increases by ~ 5–7 dB if the mode spacing increases by 1, and SIR decreases with the multiplexed mode number; and (iii) limited aperture size and misalignment lead to power leakage to other modes under calm weather, while it tends to be unobtrusive under bad weather.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Justin S. Woods ◽  
Xiaoqian M. Chen ◽  
Rajesh V. Chopdekar ◽  
Barry Farmer ◽  
Claudio Mazzoli ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Cisco Gooding ◽  
Silke Weinfurtner ◽  
William G. Unruh

Sign in / Sign up

Export Citation Format

Share Document