flat band
Recently Published Documents


TOTAL DOCUMENTS

932
(FIVE YEARS 297)

H-INDEX

47
(FIVE YEARS 8)

Author(s):  
Xiongwen Chen ◽  
Qian Wang ◽  
Ping Wu ◽  
Guanghui Zhou

Abstract We propose an AA-stacked multilayer graphene nanoribbon with two symmetrical armchair edges as a multiple flat-band (FB) material. Using the tight-binding Hamiltonian and Green’s function method, we find that the FBs are complete and merged into many dispersive bands. The FBs cause multiple strongly localized states (SLSs) at the sites of the odd lines in every sublayer and a giant optical absorption (GOA) at energy point 2t, where t is the electronic intralayer hopping energy between two nearest-neighbor sites. By driving an electric field perpendicular to the ribbon plane, the bandgaps of the FBs are tunable. Accordingly, the positions of the SLSs in the energy regime can be shifted. However, the position of the GOA is robust against such field, but its strength exhibits a collapse behavior with a fixed quantization step. On the contrary, by driving an electric field parallel to the ribbon plane, the completeness of FBs is destroyed. Resultantly, the SLSs and GOA are suppressed and even quenched. Therefore, such ribbons may be excellent candidates for the design of the controllable information-transmission and optical-electric nanodevices.


2D Materials ◽  
2022 ◽  
Author(s):  
Guangze Chen ◽  
Maryam Khosravian ◽  
Jose Lado ◽  
Aline Ramires

Abstract Twisted graphene multilayers provide tunable platforms to engineer flat bands and exploit the associated strongly correlated physics. The two-dimensional nature of these systems makes them suitable for encapsulation by materials that break specific symmetries. In this context, recently discovered two-dimensional helimagnets, such as the multiferroic monolayer NiI2, are specially appealing for breaking time-reversal and inversion symmetries due to their nontrivial spin textures. Here we show that this spin texture can be imprinted on the electronic structure of twisted bilayer graphene by proximity effect. We discuss the dependence of the imprinted spin texture on the wave-vector of the helical structure, and on the strength of the effective local exchange field. Based on these results we discuss the nature of the superconducting instabilities that can take place in helimagnet encapsulated twisted bilayer graphene. Our results put forward helimagnetic encapsulation as a powerful way of designing spin-textured flat band systems, providing a starting point to engineer a new family of correlated moire states.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tobias A. de Jong ◽  
Tjerk Benschop ◽  
Xingchen Chen ◽  
Eugene E. Krasovskii ◽  
Michiel J. A. de Dood ◽  
...  

AbstractIn ‘magic angle’ twisted bilayer graphene (TBG) a flat band forms, yielding correlated insulator behavior and superconductivity. In general, the moiré structure in TBG varies spatially, influencing the overall conductance properties of devices. Hence, to understand the wide variety of phase diagrams observed, a detailed understanding of local variations is needed. Here, we study spatial and temporal variations of the moiré pattern in TBG using aberration-corrected Low Energy Electron Microscopy (AC-LEEM). We find a smaller spatial variation than reported previously. Furthermore, we observe thermal fluctuations corresponding to collective atomic displacements over 70 pm on a timescale of seconds. Remarkably, no untwisting is found up to 600 ∘C. We conclude that thermal annealing can be used to decrease local disorder. Finally, we observe edge dislocations in the underlying atomic lattice, the moiré structure acting as a magnifying glass. These topological defects are anticipated to exhibit unique local electronic properties.


2021 ◽  
Author(s):  
D. Ben Jemia ◽  
M. Karyaoui ◽  
M. A. Wederni ◽  
A. Bardaoui ◽  
M. V. Martinez-Huerta ◽  
...  

Abstract This work investigate the influence of Silver Plasmon and reduced graphene oxide (rGO) on the photoelectrochemical performance (PEC) of ZnO thin films synthesized by the sol-gel method. The physicochemical properties of the obtained photo-anodes were systematically studied using several characterization techniques. The X-ray diffraction analysis showed that all samples presented hexagonal Wurtzite structure with apolycrystalline nature. Raman and EDX studies confirmed the existence of both Ag and rGO in ZnO: Ag/rGO thin films. The estimated grain size obtained from (SEM) analysis decreased with Ag doping, then increased to a maximum value after rGO addition. The UV-vis transmission spectra of the as-prepared ZnO: Ag and ZnO: Ag/rGO thin films have shown a reduction in the visible range with a redshift at the absorption edges. The bandgaps were estimated to be around 3.17, 2.7, and 2.52 eV for ZnO, ZnO: Ag, and ZnO: Ag/rGO, respectively. Moreover, the electrical measurements revealed that the charge exchange processes were enhanced at the ZnO: Ag/rGO/electrolyte interface, accompanied by an increase in the (PEC) performance compared to ZnO and ZnO: Ag photo-anodes. Consequently, the photocurrent density of ZnO: Ag/rGO (0.2 mA.cm-2) was around 4 and 2.22 times higher than photo-anodes based on undoped ZnO (0.05 mA.cm-2) and ZnO: Ag (0.09 mA.cm-2), respectively. Finally, from the flat band potential and donor density, deduced from the Mott-Schottky, it was clear that all the samples were n-type semiconductors with the highest carrier density for the ZnO: Ag/rGO photo-anode.


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Li Cheng ◽  
Xuanyu Long ◽  
Xiaobin Chen ◽  
Xiaolong Zou ◽  
Zheng Liu
Keyword(s):  

2021 ◽  
Author(s):  
Yi-Cai Zhang

Abstract In this work, we investigate the bound states in a one-dimensional spin-1 flat band system with a Coulomb-like potential of type III, which has a unique non-vanishing matrix element in basis $|1\rangle$. It is found that, for such a kind of potential, there exists infinite bound states. Near the threshold of continuous spectrum, the bound state energy is consistent with the ordinary hydrogen-like atom energy level with Rydberg correction. In addition, the flat band has significant effects on the bound states. For example, there are infinite bound states which are generated from the flat band. Furthermore, when the potential is weak, the bound state energy is proportional to the potential strength $\alpha$. When the bound state energies are very near the flat band, they are inversely proportional to the natural number $n$ (e.g., $E_n\propto 1/n, n=1,2,3,...$). Further we find that the energy spectrum can be well described by quasi-classical approximation (WKB method). Finally, we give a critical potential strength $\alpha_c$ at which the bound state energy reaches the threshold of continuous spectrum. After crossing the threshold, the bound states in the continuum (BIC) would exist in such a flat band system.


Author(s):  
Iyyappa Rajan Panneerselvam ◽  
Pranay Chakraborty ◽  
qiong nian ◽  
Yongfeng Lu ◽  
Yiliang Liao ◽  
...  

Abstract The rational design of the electronic band structures and the associated properties (e.g., optical) of advanced materials has remained challenging for crucial applications in optoelectronics, solar desalination, advanced manufacturing technologies, etc. In this work, using first-principles calculations, we studied the prospects of tuning the absorption spectra of graphene via defect engineering, i.e., chemical doping and oxidation. Our computational analysis shows that graphene functionalization with single hydroxyl and carboxylic acid fails to open a band gap in graphene. While single epoxide functionalization successfully opens a bandgap in graphene and increases absorptivity, however, other optical properties such as reflection, transmission, and dielectric constants are significantly altered. Boron and nitrogen dopants lead to p- and n-type doping, respectively, while fluorine dopants or a single-carbon atomic vacancy cannot create a significant bandgap in graphene. By rigorously considering the spin-polarization effect, we find that titanium, zirconium, and hafnium dopants can create a bandgap in graphene via an induced flat band around the Fermi level as well as the collapse of the Dirac cone. In addition, silicon, germanium, and tin dopants are also effective in improving the optical characteristics. Our work is important for future experimental work on graphene for laser and optical processing applications.


Author(s):  
Seungjun Lee ◽  
Hussain Alsalman ◽  
Wei Jiang ◽  
Tony Low ◽  
Young-Kyun Kwon

Sign in / Sign up

Export Citation Format

Share Document