scholarly journals High fidelity heralded single-photon source using cavity quantum electrodynamics

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Zhang ◽  
Chang Xu ◽  
Zhongzhou Ren
PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhiyuan Qian ◽  
Lingxiao Shan ◽  
Xinchen Zhang ◽  
Qi Liu ◽  
Yun Ma ◽  
...  

AbstractSingle-photon source in micro- or nanoscale is the basic building block of on-chip quantum information and scalable quantum network. Enhanced spontaneous emission based on cavity quantum electrodynamics (CQED) is one of the key principles of realizing single-photon sources fabricated by micro- or nanophotonic cavities. Here we mainly review the spontaneous emission of single emitters in micro- or nanostructures, such as whispering gallery microcavities, photonic crystals, plasmon nanostructures, metamaterials, and their hybrids. The researches have enriched light-matter interaction as well as made great influence in single-photon source, photonic circuit, and on-chip quantum information.


Author(s):  
Alex S. Clark ◽  
Chad Husko ◽  
Matthew J. Collins ◽  
Alfredo De Rossi ◽  
Sylvain Combrié ◽  
...  

2020 ◽  
Vol 6 (50) ◽  
pp. eabc8268 ◽  
Author(s):  
Ravitej Uppu ◽  
Freja T. Pedersen ◽  
Ying Wang ◽  
Cecilie T. Olesen ◽  
Camille Papon ◽  
...  

Photonic qubits are key enablers for quantum information processing deployable across a distributed quantum network. An on-demand and truly scalable source of indistinguishable single photons is the essential component enabling high-fidelity photonic quantum operations. A main challenge is to overcome noise and decoherence processes to reach the steep benchmarks on generation efficiency and photon indistinguishability required for scaling up the source. We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an “on-chip” planar nanophotonic waveguide circuit. The device produces long strings of >100 single photons without any observable decrease in the mutual indistinguishability between photons. A total generation rate of 122 million photons per second is achieved, corresponding to an on-chip source efficiency of 84%. These specifications of the single-photon source are benchmarked for boson sampling and found to enable scaling into the regime of quantum advantage.


2012 ◽  
Vol 37 (17) ◽  
pp. 3738 ◽  
Author(s):  
Olivier Morin ◽  
Virginia D’Auria ◽  
Claude Fabre ◽  
Julien Laurat

2005 ◽  
Vol 86 (20) ◽  
pp. 201111 ◽  
Author(s):  
M. B. Ward ◽  
O. Z. Karimov ◽  
D. C. Unitt ◽  
Z. L. Yuan ◽  
P. See ◽  
...  

2010 ◽  
Vol 96 (10) ◽  
pp. 101105 ◽  
Author(s):  
Pallab Bhattacharya ◽  
Ayan Das ◽  
Debashish Basu ◽  
Wei Guo ◽  
Junseok Heo

2013 ◽  
Vol 38 (5) ◽  
pp. 649 ◽  
Author(s):  
Alex S. Clark ◽  
Chad Husko ◽  
Matthew J. Collins ◽  
Gaelle Lehoucq ◽  
Stéphane Xavier ◽  
...  

2009 ◽  
Vol 3 (11) ◽  
pp. 611-612 ◽  
Author(s):  
John Cunningham

2014 ◽  
Vol 22 (3) ◽  
pp. 3244 ◽  
Author(s):  
Martin J. Stevens ◽  
Scott Glancy ◽  
Sae Woo Nam ◽  
Richard P. Mirin

Sign in / Sign up

Export Citation Format

Share Document