nanophotonic structures
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 62)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Jinal Tapar ◽  
Saurabh Kishen ◽  
Naresh Kumar Emani

Abstract All-dielectric nanophotonics is a rapidly developing and practical alternative to plasmonics for nanoscale optics. The electric and magnetic Mie resonances in high-index low-loss dielectric nanoresonators can be engineered to exhibit unique scattering response. Recently, nanophotonic structures satisfying parity-time (PT) symmetry have been shown to exhibit novel scattering responses beyond what can be achieved from the conventional nanoresonators. The complex interference of the magnetic and electric Mie resonances and lattice modes excited in PT-symmetric nanoantenna arrays give rise to a scattering anomaly called lasing spectral singularity (SS), where the scattering coefficients tend to infinity. In our previous work [1], we demonstrated the existence of lasing spectral singularities in vertically stacked 2D GaInP PT-symmetric metasurface. In this paper, we analyze the direction-sensitive scattering response of the PT-symmetric GaInP metasurface by decomposing the total scattered field into the electric and magnetic multipoles. The far-field scattering response at the singularity is highly asymmetric for incidence from either the gain or loss side and can be tuned by changing the geometry. By analyzing the phase of even- and odd-parity higher order multipoles, we explain the observed scattering response over a broad parameter space in terms of generalized Kerker effect. The interference between the direction-dependent excitation of different order multipoles and the overall 2D-lattice resonance opens a route towards designing a special class of tunable sources exhibiting direction-sensitive emission properties.


2021 ◽  
Vol 11 (4) ◽  
pp. 422-436
Author(s):  
N.V. Golovastikov ◽  
◽  
S.P. Dorozhkin ◽  
V.A. Soife ◽  
◽  
...  

This paper discusses the prospects of photonics, shows the relevance and applicability of photonics research. The poten-tial of photonics technologies to answer the socio-economic challenges of the digital transformation age is revealed. Opportunities that emerge with the introduction of photonic devices to various technical systems designed for environ-mental protection and quality of life improvement are demonstrated. Concrete photonics structures and devices for such key applications as spectroscopy, analog optical calculations, and optical neural networks are closely examined. Possi-ble applications for photonic sensors and new type spectrometers are outlined, their competitive advantages explored. Various geometries of extra fine compact photonic spectrometers are presented: based on digital planar diagrams, inte-grated into the photonic waveguides, metasurfaces, diffraction gratings with varying parameters. The benefits of analog optical computations against conventional electronic devices are discussed. Various nanophotonic structures designed for differential and integral operators are studied, solutions for edge detection are proposed. The concept for artificial intelligence implementation on the photonics platform using optical neural networks is analyzed. Various solutions are examined: containing sequences of diffraction elements and based on Huygens–Fresnel principle, as well as planar structures comprised of waveguides that interact as Mach–Zehnder interferometer. SPIE estimation of the international photonics market proposes that the peak of interest for this field is yet to be achieved and photonics will claim its place in the future technological landscape.


Author(s):  
Lujun Huang ◽  
Alex Krasnok ◽  
Andrea Alu ◽  
Yiling Yu ◽  
Dragomir Neshev ◽  
...  

Abstract Two dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different types of van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.


2021 ◽  
Author(s):  
Wenjin Xue ◽  
Owen Miller

Abstract There has been a significant effort to design nanophotonic structures that process images at the speed of light. A prototypical example is in edge detection, where photonic-crystal-, metasurface-, and plasmon-based designs have been proposed and in some cases experimentally demonstrated. In this work, we show that multilayer optical interference coatings can achieve visible-frequency edge detection in transmission with high numerical aperture, two-dimensional image formation, and straightforward fabrication techniques, unique among all nanophotonic approaches. We show that the conventional Laplacian-based transmission spectrum may not be ideal once the scattering physics of real designs is considered, and show that better performance can be attained with alternative spatial filter functions. Our designs, comprising alternating layers of Si and SiO2 with total thicknesses of only 1 µm, demonstrate the possibility for optimized multilayer films to achieve state-of-the-art edge detection, and, more broadly, analog optical implementations of linear operators.


PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhiyuan Qian ◽  
Lingxiao Shan ◽  
Xinchen Zhang ◽  
Qi Liu ◽  
Yun Ma ◽  
...  

AbstractSingle-photon source in micro- or nanoscale is the basic building block of on-chip quantum information and scalable quantum network. Enhanced spontaneous emission based on cavity quantum electrodynamics (CQED) is one of the key principles of realizing single-photon sources fabricated by micro- or nanophotonic cavities. Here we mainly review the spontaneous emission of single emitters in micro- or nanostructures, such as whispering gallery microcavities, photonic crystals, plasmon nanostructures, metamaterials, and their hybrids. The researches have enriched light-matter interaction as well as made great influence in single-photon source, photonic circuit, and on-chip quantum information.


Nanophotonics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 3519-3525
Author(s):  
Chunqi Jin ◽  
Yuanmu Yang

Abstract It is well-known that a Fourier optical system can be used to perform specific computing tasks, such as image differentiation, with a superior speed and power consumption in comparison with digital computers, despite bulky optical components that are often required. Recently, there has been a surge in the interest to design much more compact nanophotonic structures, such as dielectric and metallic thin films, photonic crystals, and metasurfaces with a tailored angle-dependent (nonlocal) optical response, to directly perform image differentiation without additional lenses for Fourier transformation. Here, we present a straightforward platform, a multilayer dielectric thin film optical filter, fabricated using mature wafer-scale thin film deposition technique, with an optimized nonlocal optical response, for isotropic image differentiation in transmission mode for arbitrary input polarization. The proposed thin film filter may be conveniently coated at various transparent surfaces and inserted in machine vision or microscopy systems for enhanced, real-time image processing.


Sign in / Sign up

Export Citation Format

Share Document