scholarly journals Preferential flow pathways in a deforming granular material: self-organization into functional groups for optimized global transport

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joost H. van der Linden ◽  
Antoinette Tordesillas ◽  
Guillermo A. Narsilio

AbstractExisting definitions of where and why preferential flow in porous media occurs, or will occur, assume a priori knowledge of the fluid flow and do not fully account for the connectivity of available flow paths in the system. Here we propose a method for identifying preferential pathways through a flow network, given its topology and finite link capacities. Using data from a deforming granular medium, we show that the preferential pathways form a set of percolating pathways that is optimized for global transport of interstitial pore fluid in alignment with the applied pressure gradient. Two functional subgroups emerge. The primary subgroup comprises the main arterial paths that transmit the greatest flow through shortest possible routes. The secondary subgroup comprises inter- and intra-connecting bridges that connect the primary paths, provide alternative flow routes, and distribute flow through the system to maximize throughput. We examine the multiscale relationship between functionality and subgroup structure as the sample dilates in the lead up to the failure regime where the global volume then remains constant. Preferential flow pathways chain together large, well-connected pores, reminiscent of force chain structures that transmit the majority of the load in the solid grain phase.

2012 ◽  
Vol 48 (4) ◽  
Author(s):  
Emily C. Sanders ◽  
Majdi R. Abou Najm ◽  
Rabi H. Mohtar ◽  
Eileen Kladivko ◽  
Darrell Schulze

2020 ◽  
Vol 726 ◽  
pp. 138511 ◽  
Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  

Forests ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 19 ◽  
Author(s):  
Dorit Julich ◽  
Stefan Julich ◽  
Karl-Heinz Feger

Soil Research ◽  
1982 ◽  
Vol 20 (2) ◽  
pp. 193 ◽  
Author(s):  
P Kanchanasut ◽  
DR Scotter

The distribution of surface-applied bromide, after leaching with 50 mm of ponded water, was measured in soil profiles under long-term pasture and under an oat crop. Also measured was the bromide distribution under pasture after leaching with natural rainfall. The method of water application, the vegetative cover, and the soil structure interacted to produce quite different leaching patterns. However, in all experiments the highest bromide concentrations after leaching were in the top 20 mm of soil. It is suggested that the vegetation, by inducing preferential flow pathways, retarded the leaching of bromide from the soil near the surface. Also rainfall on pasture apparently was subject to interception and stem-flow, which caused less effective leaching from the topsoil than would have occurred under fallow. Rainfall did, however, leach more efficiently than ponded water, probably as it induced largely unsaturated flow. But, even after 182 mm of rain in excess of evapotranspiration, 10% of the applied bromide was still recoverable from the top 50 mm of soil under pasture. Different soil structures under cropping and pasture affected the leaching patterns with ponded water. A compacted layer at 100-140 mm depth in the cropped soil apparently throttled infiltration, resulting in unsaturated flow, and hence more uniform miscible displacement below than above it. In all cases the bromide concentration at any soil depth was highly variable, with replicates tending toward a log-normal rather than normal frequency distribution.


Sign in / Sign up

Export Citation Format

Share Document