scholarly journals Detecting infiltrated water and preferential flow pathways through time-lapse ground-penetrating radar surveys

2020 ◽  
Vol 726 ◽  
pp. 138511 ◽  
Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  
Author(s):  
Simone Di Prima ◽  
Thierry Winiarski ◽  
Rafael Angulo-Jaramillo ◽  
Ryan D. Stewart ◽  
Mirko Castellini ◽  
...  

<p>Preferential flow is more the rule than the exception, in particular during water infiltration experiments. In this study, we demonstrate the potential of GPR monitoring to detect preferential flows during water infiltration. We monitored time-lapse ground penetrating radar (GPR) surveys in the vicinity of single-ring infiltration experiments and created a three-dimensional (3D) representation of infiltrated water below the devices. For that purpose, radargrams were constructed from GPR transects conducted over two grids (1 m × 1 m) before and after the infiltration tests. The obtained signal was represented in 3D and a threshold was chosen to part the domain into wetted and non-wetted zones, allowing the determination of the infiltration bulb. That methodology was used to detect the infiltration below the devices and clearly pointed at nonuniform flows in correspondence with the heterogeneous soil structures. The protocol presented in this study represents a practical and valuable tool for detecting preferential flows at the scale of a single ring infiltration experiment.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. H1-H8 ◽  
Author(s):  
Niklas Allroggen ◽  
Jens Tronicke

Analysis of time-lapse ground-penetrating radar (GPR) data can provide information regarding subsurface hydrological processes, such as preferential flow. However, the analysis of time-lapse data is often limited by data quality; for example, for noisy input data, the interpretation of difference images is often difficult. Motivated by modern image-processing tools, we have developed two robust GPR attributes, which allow us to distinguish amplitude (contrast similarity) and time-shift (structural similarity) variations related to differences between individual time-lapse GPR data sets. We tested and evaluated our attributes using synthetic data of different complexity. Afterward, we applied them to a field data example, in which subsurface flow was induced by an artificial rainfall event. For all examples, we identified our structural similarity attribute to be a robust measure for highlighting time-lapse changes also in data with low signal-to-noise ratios. We determined that our new attribute-based workflow is a promising tool to analyze time-lapse GPR data, especially for imaging subsurface hydrological processes.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. A19-A23 ◽  
Author(s):  
Niklas Allroggen ◽  
Daniel Beiter ◽  
Jens Tronicke

Earth and environmental sciences rely on detailed information about subsurface processes. Whereas geophysical techniques typically provide highly resolved spatial images, monitoring subsurface processes is often associated with enormous effort and, therefore, is usually limited to point information in time or space. Thus, the development of spatial and temporal continuous field monitoring methods is a major challenge for the understanding of subsurface processes. We have developed a novel method for ground-penetrating-radar (GPR) reflection monitoring of subsurface flow processes under unsaturated conditions and applied it to a hydrological infiltration experiment performed across a periglacial slope deposit in northwest Luxembourg. Our approach relies on a spatial and temporal quasicontinuous data recording and processing, followed by an attribute analysis based on analyzing differences between individual time steps. The results demonstrate the ability of time-lapse GPR monitoring to visualize the spatial and temporal dynamics of preferential flow processes with a spatial resolution in the order of a few decimeters and temporal resolution in the order of a few minutes. We observe excellent agreement with water table information originating from different boreholes. This demonstrates the potential of surface-based GPR reflection monitoring to observe the spatiotemporal dynamics of water movements in the subsurface. It provides valuable, and so far not accessible, information for example in the field of hydrology and pedology that allows studying the actual subsurface processes rather than deducing them from point information.


2021 ◽  
Author(s):  
Ludmila Roder ◽  
Simone Di Prima ◽  
Sergio Campus ◽  
Filippo Giadrossich ◽  
Ryan D. Stewart ◽  
...  

<p>Research over the past several decades has shown that preferential flow is more the rule than the exception. However, our collective understanding of preferential flow processes has been limited by a lack of suitable methods to detect and visualize the initiation and evolution of non-uniform wetting at high spatial and temporal resolutions, particularly in real-world settings. In this study, we investigate water infiltration initiation by tree trunk and root systems. We carried out time-lapse ground penetrating radar (GPR) surveys in conjunction with a simulated stemflow event to provide evidence of root-induced preferential flow and generate a three-dimensional representation of the wetted zone.</p><p>We established a survey grid (3.5 m × 5 m, with a local slope of 10.3°), consisting of ten horizontal and thirteen vertical parallel survey lines with 0.5 m intervals between them. The horizontal lines were downslope-oriented. The grid was placed around a Quercus suber L. We collected a total of 46 (2 GPR surveys × 23 survey lines) radargrams using an IDS (Ingegneria Dei Sistemi S.p.A.) Ris Hi Mod v. 1.0 system with a 900-MHz antenna mounted on a GPR cart. Two grid GPR surveys were carried out before and after the artificial stemflow experiment. In the experiment, we applied 100 L of brilliant blue dye (E133) solution on the tree trunk. The stemflow volume of 100 L corresponded to 63.2 mm of incident precipitation, considering a crown projected area of 201 m<sup>2</sup> and a 1.3% conversion rate of rainfall to stemflow. Trench profiles were carefully excavated with hand tools to remove soil and detect both root location and size and areas of infiltration and preferential pathways on the soil profile.</p><p>The majority (84.4%) of artificially applied stemflow infiltrated into the soil, while the remaining 15.6% generated overland flow, which was collected by a small v-shaped plastic channel placed into a groove previously scraped on the downhill side of the tree. The 3D diagram clearly demarcated the dimension and shape of the wetted zone, thus providing evidence of root-induced preferential flow along coarse roots. The wetted zone extended downslope up to a horizontal distance of 3 m from the trunk and down to a depth of approximately 0.7 m. Put all together, this study shows the importance of accounting for plant and trees trunk and root systems when quantifying infiltration.</p>


2015 ◽  
Vol 19 (3) ◽  
pp. 1125-1139 ◽  
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse ground-penetrating radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments that have been carried out at our artificial ASSESS test site and observed with surface-based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows the study of soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the feasibility of monitoring the dynamic shape of the capillary fringe reflection and (ii) the relative precision of monitoring soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.


Sign in / Sign up

Export Citation Format

Share Document