scholarly journals Author Correction: Quasi-probability information in a coupled two-qubit system interacting non-linearly with a coherent cavity under intrinsic decoherence

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdel‑Baset A. Mohamed ◽  
Hichem Eleuch

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdel-Baset A. Mohamed ◽  
Hichem Eleuch

AbstractWe explore the phase space quantum effects, quantum coherence and non-classicality, for two coupled identical qubits with intrinsic decoherence. The two qubits are in a nonlinear interaction with a quantum field via an intensity-dependent coupling. We investigate the non-classicality via the Wigner functions. We also study the phase space information and the quantum coherence via the Q-function, Wehrl density, and Wehrl entropy. It is found that the robustness of the non-classicality for the superposition of coherent states, is highly sensitive to the coupling constants. The phase space quantum information and the matter-light quantum coherence can be controlled by the two-qubit coupling, initial cavity-field and the intrinsic decoherence.


2019 ◽  
Vol 100 (5) ◽  
Author(s):  
Changliang Ren ◽  
Tianfeng Feng ◽  
Dan Yao ◽  
Haofei Shi ◽  
Jingling Chen ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 728
Author(s):  
Zhaofeng Su

Quantum entanglement is not only a fundamental concept in quantum mechanics but also a special resource for many important quantum information processing tasks. An intuitive way to understand quantum entanglement is to analyze its geometric parameters which include local parameters and correlation parameters. The correlation parameters have been extensively studied while the role of local parameters have not been drawn attention. In this paper, we investigate the question how local parameters of a two-qubit system affect quantum entanglement in both quantitative and qualitative perspective. Firstly, we find that the concurrence, a measure of quantum entanglement, of a general two-qubit state is bounded by the norms of local vectors and correlations matrix. Then, we derive a sufficient condition for a two-qubit being separable in perspective of local parameters. Finally, we find that different local parameters could make a state with fixed correlation matrix separable, entangled or even more qualitatively entangled than the one with vanished local parameters.


Sign in / Sign up

Export Citation Format

Share Document