qubit system
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 120)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 32 ◽  
pp. 105041
Author(s):  
Saeed Haddadi ◽  
Ming-Liang Hu ◽  
Youssef Khedif ◽  
Hazhir Dolatkhah ◽  
Mohammad Reza Pourkarimi ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2445
Author(s):  
Mariam Algarni ◽  
Kamal Berrada ◽  
Sayed Abdel-Khalek ◽  
Hichem Eleuch

In this manuscript, we examine the dynamical behavior of the coherence in open quantum systems using the l1 norm. We consider a two-qubit system that evolves in the framework of Kossakowski-type quantum dynamical semigroups (KTQDSs) of completely positive maps (CPMs). We find that the quantum coherence can be asymptotically maintained with respect to the values of the system parameters. Moreover, we show that the quantum coherence can resist the effect of the environment and preserve even in the regime of long times. The obtained results also show that the initially separable states can provide a finite value of the coherence during the time evolution. Because of such properties, several states in this type of environments are good candidates for incorporating quantum information and optics (QIO) schemes. Finally, we compare the dynamical behavior of the coherence with the entire quantum correlation.


Author(s):  
ZHANG Fu Gang

Abstract In this paper, we discuss quantum uncertainty relations of Tsallis relative $\alpha$ entropy coherence for a single qubit system based on three mutually unbiased bases. For $\alpha\in[\frac{1}{2},1)\cup(1,2]$, the upper and lower bounds of sums of coherence are obtained. However, the above results cannot be verified directly for any $\alpha\in(0,\frac{1}{2})$. Hence, we only consider the special case of $\alpha=\frac{1}{n+1}$, where $n$ is a positive integer, and we obtain the upper and lower bounds. By comparing the upper and lower bounds, we find that the upper bound is equal to the lower bound for the special $\alpha=\frac{1}{2}$, and the differences between the upper and the lower bounds will increase as $\alpha$ increases. Furthermore, we discuss the tendency of the sum of coherence, and find that it has the same tendency with respect to the different $\theta$ or $\varphi$, which is opposite to the uncertainty relations based on the R\'{e}nyi entropy and Tsallis entropy.


2021 ◽  
Author(s):  
S. K. Zhao ◽  
Zi-Yong Ge ◽  
Zhongcheng Xiang ◽  
G. M. Xue ◽  
H. S. Yan ◽  
...  

Abstract The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbour (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.


Author(s):  
Miao Xu ◽  
Wei-feng Zhou ◽  
Feng Chen ◽  
Lizhen Jiang ◽  
Xiao-yu Chen

Abstract A quantum entangled state is easily disturbed by noise and degenerates into a separable state. Comparing to the entanglement of bipartite quantum systems, less progresses have been made for the entanglement of multipartite quantum systems. For tripartite separability of a four-qubit system, we propose two entanglement witnesses, each of which corresponds to a necessary condition of tripartite separability. For the four-qubit GHZ state mixed with a W state and white noise, it is proved that the necessary conditions of tripartite separability are also sufficient at W state side.


Author(s):  
Akram Touil ◽  
Baris Cakmak ◽  
Sebastian Deffner

Abstract It is an established fact that quantum coherences have thermodynamic value. The natural question arises, whether other genuine quantum properties such as entanglement can also be exploited to extract thermodynamic work. In the present analysis, we show that the ergotropy can be expressed as a function of the quantum mutual information, which demonstrates the contributions to the extractable work from classical and quantum correlations. More specifically, we analyze bipartite quantum systems with locally thermal states, such that the only contribution to the ergotropy originates in the correlations. Our findings are illustrated for a two-qubit system collectively coupled to a thermal bath.


Author(s):  
Lunan Li ◽  
Hai Li ◽  
Wenli Yu ◽  
Yaming Hao ◽  
Lei Li ◽  
...  

Abstract For an Otto cycle there always exists a trade-off between the cycle efficiency and the output power due to the requirement of cycle length. The shortcut to adiabatic (STA) technology provides an effective way to deal with the difficulty of zero-output power in conventional Otto cycle. In this paper, the Otto cycle of three-qubit system as the working substance (WS) with counterdiabatic (CD) driving has been investigated. It is demonstrated that the tripartite Otto cycle as a universal machine, in the suitable regimes of external control parameter, could work as a quantum heat engine (QHE), refrigerator or heat pump. And, the performances of QHE and refrigerator with and without STA, such as the power and efficiency of QHE and the coefficient of performance (COP) and figure of merit (FOM)) of refrigerator, have been investigated. It shows the application of STA scheme can lead to an effective enhancement in the performances of Otto cycle, including achievements of a high QHE’s/refrigerator’s power associated with a moderate QHE’s efficiency/COP of refrigerator. Especially, it is interesting that even in a short-time cycle the optimization of control parameters could arise a remarkable improvement in the efficiency (or COP) of STA QHE (refrigerator), approaching the ideal efficiency or COP of conventional Otto cycle with quasi-static process. Finally, with the aid of parameter optimization the trade-off regions between the efficiency and the power (the COP and the FOM) of STA Otto engine (refrigerator) have been advised.


Author(s):  
Asad Ali ◽  
Muhammad Anees Khan

We investigate the behavior of thermal quantum coherence in the Heisenberg XXX model for a two-qubit system placed in independently controllable Inhomogeneous magnetic fields applied to two qubits respectively. We discuss the behavior of quantum coherence by systematically varying the coupling parameter, magnetic field, and temperature for both ferromagnetic and antiferromagnetic cases. The results show the interesting behavior of quantum coherence in a certain range of parameters. Generally, it is observed that quantum correlations decay with temperature, but in the ferromagnetic case with uniform magnetic interaction, it rises with temperature up to a certain threshold value and ultimately it decreases its value to zero. Moreover, it is observed that preserving the quantum coherence for small temperatures is very hard with the increasing magnetic field because, at small temperatures, quantum coherence decays sharply with the increase in magnetic field whereas at larger temperatures it decays completely at fairly large values of the magnetic field. The variation of quantum coherence with uniform magnetic field in the antiferromagnetic case is observed to be Gaussian for larger temperature but at zero or nearly zero temperature, it behaves as a constant function for uniform magnetic field up to a threshold value and then decays to zero with an infinite slope. This shows the signature of quantum phase transition from quantum nature to classicality.


2021 ◽  
Vol 94 (11) ◽  
Author(s):  
Ya. S. Greenberg ◽  
A. A. Shtygashev ◽  
A. G. Moiseev

Sign in / Sign up

Export Citation Format

Share Document