scholarly journals Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Gaide ◽  
Charlotte Foret-Lucas ◽  
Thomas Figueroa ◽  
Timothée Vergne ◽  
Marie-Noëlle Lucas ◽  
...  

AbstractHighly Pathogenic Avian Influenza viruses (HPAIVs) display a tissue pantropism, which implies a possible spread in feathers. HPAIV detection from feathers had been evaluated for H5N1 or H7N1 HPAIVs. It was suggested that viral RNA loads could be equivalent or higher in samples of immature feather compared to tracheal (TS) or cloacal swabs (CS). We investigated the suitability of feathers for the detection of clade 2.3.4.4b H5N8 HPAIV in ducks and geese field samples. In the six H5N8 positive flocks that were included in this study, TS, CS and immature wing feathers were taken from at least 10 birds. Molecular loads were then estimated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) targetting H5 and M genes. In all flocks, viral loads were at least equivalent between feather and swab samples and in most cases up to 103 higher in feathers. Bayesian modelling confirmed that, in infected poultry, RT-qPCR was much more likely to be positive when applied on a feather sample only (estimated sensitivity between 0.89 and 0.96 depending on the positivity threshold) than on a combination of a tracheal and a cloacal swab (estimated sensitivity between 0.45 and 0.68 depending on the positivity threshold). Viral tropism and lesions in feathers were evaluated by histopathology and immunohistochemistry. Epithelial necrosis of immature feathers and follicles was observed concurrently with positive viral antigen detection and leukocytic infiltration of pulp. Accurate detection of clade 2.3.4.4b HPAIVs in feather samples were finally confirmed with experimental H5N8 infection on 10-week-old mule ducks, as viral loads at 3, 5 and 7 days post-infection were higher in feathers than in tracheal or cloacal swabs. However, feather samples were associated with lower viral loads than tracheal swabs at day 1, suggesting better detectability of the virus in feathers in the later course of infection. These results, based on both field cases and experimental infections, suggest that feather samples should be included in the toolbox of samples for detection of clade 2.3.4.4b HPAI viruses, at least in ducks and geese.

2021 ◽  
Author(s):  
Pierre Bessière ◽  
Thomas Figueroa ◽  
Amelia Coggon ◽  
Charlotte Foret-Lucas ◽  
Alexandre Houffschmitt ◽  
...  

Highly pathogenic avian influenza viruses (HPAIV) emerge from low pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse-genetics engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8 LP increased H5N8 HP replication and pathogenesis. By contrast, the H5N8 LP antagonized H5N8 HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8 LP , which correlated with H5N8 HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variants interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between highly and low pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention and they underscore the importance of within-host viral variants interactions in virus evolution.


2009 ◽  
Vol 133 (1-2) ◽  
pp. 65-74 ◽  
Author(s):  
Takehiko Saito ◽  
Chiaki Watanabe ◽  
Nobuhiro Takemae ◽  
Arunee Chaisingh ◽  
Yuko Uchida ◽  
...  

2021 ◽  
Vol 65 (3) ◽  
Author(s):  
Aya Matsuu ◽  
Taichiro Tanikawa ◽  
Yoshikazu Fujimoto ◽  
Mihoko Yabuki ◽  
Ryota Tsunekuni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document