viral evolution
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 267)

H-INDEX

50
(FIVE YEARS 10)

2022 ◽  
Vol 119 (4) ◽  
pp. e2113118119
Author(s):  
Juan Rodriguez-Rivas ◽  
Giancarlo Croce ◽  
Maureen Muscat ◽  
Martin Weigt

The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Sara Becker ◽  
Annette Fink ◽  
Jürgen Podlech ◽  
Matthias J. Reddehase ◽  
Niels A. Lemmermann

Cytomegaloviruses (CMVs) are host species-specific and have adapted to their respective mammalian hosts during co-evolution. Host-adaptation is reflected by “private genes” that have specialized in mediating virus-host interplay and have no sequence homologs in other CMV species, although biological convergence has led to analogous protein functions. They are mostly organized in gene families evolved by gene duplications and subsequent mutations. The host immune response to infection, both the innate and the adaptive immune response, is a driver of viral evolution, resulting in the acquisition of viral immune evasion proteins encoded by private gene families. As the analysis of the medically relevant human cytomegalovirus by clinical investigation in the infected human host cannot make use of designed virus and host mutagenesis, the mouse model based on murine cytomegalovirus (mCMV) has become a versatile animal model to study basic principles of in vivo virus-host interplay. Focusing on the immune evasion of the adaptive immune response by CD8+ T cells, we review here what is known about proteins of two private gene families of mCMV, the m02 and the m145 families, specifically the role of m04, m06, and m152 in viral antigen presentation during acute and latent infection.


2022 ◽  
Author(s):  
Yiyan Yang ◽  
Keith Dufault-Thompson ◽  
Rafaela Salgado Fontenele ◽  
Xiaofang Jiang

Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data from SARS-CoV-2 infected cells, we show that viral-host chimeric RNAs are formed through what are likely stochastic RNA-dependent RNA polymerase template switching events. Through an analysis of the publicly available GISAID SARS-CoV-2 genome collection, we then identified two genomic insertions in circulating SARS-CoV-2 variants that are identical to regions of the human 18S and 28S rRNAs. These results provide direct evidence of the formation of viral-host chimeric sequences and the integration of host genetic material into the SARS-CoV-2 genome, highlighting the potential importance of host-derived insertions in viral evolution.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Adam A. Capoferri ◽  
Wei Shao ◽  
Jon Spindler ◽  
John M. Coffin ◽  
Jason W. Rausch ◽  
...  

COVID-19 vaccines were first administered on 15 December 2020, marking an important transition point for the spread of SARS-CoV-2 in the United States (U.S.). Prior to this point in time, the virus spread to an almost completely immunologically naïve population, whereas subsequently, vaccine-induced immune pressure and prior infections might be expected to influence viral evolution. Accordingly, we conducted a study to characterize the spread of SARS-CoV-2 in the U.S. pre-vaccination, investigate the depth and uniformity of genetic surveillance during this period, and measure and otherwise characterize changing viral genetic diversity, including by comparison with more recently emergent variants of concern (VOCs). In 2020, SARS-CoV-2 spread across the U.S. in three phases distinguishable by peaks in the numbers of infections and shifting geographical distributions. Virus was genetically sampled during this period at an overall rate of ~1.2%, though there was a substantial mismatch between case rates and genetic sampling nationwide. Viral genetic diversity tripled over this period but remained low in comparison to other widespread RNA virus pathogens, and although 54 amino acid changes were detected at frequencies exceeding 5%, linkage among them was not observed. Based on our collective observations, our analysis supports a targeted strategy for worldwide genetic surveillance as perhaps the most sensitive and efficient means of detecting new VOCs.


Author(s):  
Patrick Mellacher

AbstractHow will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. “Smart” containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Lori A. Rowe ◽  
Brandon J. Beddingfield ◽  
Kelly Goff ◽  
Stephanie Z. Killeen ◽  
Nicole R. Chirichella ◽  
...  

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


Author(s):  
Mr. Chintale Deepak Baliram

Abstract: Background: In late December 2019, Chinese health authorities reported an outbreak of pneumonia of unknown origin in Wuhan, Hubei Province. Summary: A few days later, the genome of a novel coronavirus was released. org/t/novel2019-coronavirus-genome/319; Wuhan- Hu-1, GenBank accession No. MN908947) and made publicly available to the scientific community. This novel coronavirus was provisionally named 2019-nCoV, now SARS-CoV-2 according to the Coronavirus Study Group of the International Committee on Taxonomy of Viruses. SARS-CoV-2 belongs to the Coronaviridae family, Betacoronavirus genus, subgenus Sarbecovirus. Since its discovery, the virus has spread globally, causing thousands of deaths and having an enormous impact on our health systems and economies. In this review, we summarize the current knowledge about the epidemiology, phylogenesis, homology modeling, and molecular diagnostics of SARS-CoV-2. Phylogenetic analysis is essential to understand viral evolution, whereas homology modeling is important for vaccine strategies and therapies. Highly sensitive and specific diagnostic assays are key to case identification, contact tracing, identification of the animal source, and implementation of control measures. Keywords: COVID-19 · SARS-CoV-2 · Pandemic · Phylogenesis · Protein modeling · Real-time polymerase chain reaction


2021 ◽  
Author(s):  
Michael Diamond ◽  
Peter Halfmann ◽  
Tadashi Maemura ◽  
Kiyoko Iwatsuki-Horimoto ◽  
Shun Iida ◽  
...  

Abstract Despite the development and deployment of antibody and vaccine countermeasures, rapidly-spreading SARS-CoV-2 variants with mutations at key antigenic sites in the spike protein jeopardize their efficacy. The recent emergence of B.1.1.529, the Omicron variant1,2, which has more than 30 mutations in the spike protein, has raised concerns for escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in pre-clinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) program of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of multiple B.1.1.529 Omicron isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2) expressing mice and hamsters. Despite modeling and binding data suggesting that B.1.1.529 spike can bind more avidly to murine ACE2, we observed attenuation of infection in 129, C57BL/6, and BALB/c mice as compared with previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. Although K18-hACE2 transgenic mice sustained infection in the lungs, these animals did not lose weight. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease, and pathology with B.1.1.529 also were milder compared to historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from multiple independent laboratories of the SAVE/NIAID network with several different B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


2021 ◽  
Vol 19 (2) ◽  
Author(s):  
C. S. Ukwueze ◽  
B. M. Anene ◽  
C. I. Nwosuh ◽  
R. C. Ezeokonkwo

Background: Canine parvoviral enteritis (CPE) is currently considered one of the major leading causes of morbidity and mortality in dogs. Canine parvovirus (CPV-2) was first isolated in 1978, ever since then the virus has mutated to CPV-2a, CPV-2b and recently CPV-2c, which has made the control and eradication of disease seemingly impossible. The disease has been reported in several parts of the world including; USA, Canada, Australia, United Kingdom, Taiwan, and Tunisia, South Africa and Nigeria. The identification of the strains of CPV-2 that are currently circulating in the canine population is very essential for the understanding of viral evolution and the development of measures to control its spread. This review therefore, focuses on the current trends and antigenic variants of canine parvovirus type 2 (CPV-2) circulating in Nigeria. Methods: Previous literatures were reviewed on the status of canine parvovirus type 2 in Nigeria. The emphasis was on the antigenic variants of CPV-2 circulating in Nigeria and strains of the virus in the vaccines, and out breaks of infections. Results: Control and prevention of canine parvoviral enteritis (CPE) has remained a global challenge, and relies mainly on extensive vaccination. Sequence analysis of CPV-2 has revealed the presence of the three antigenic variants in Nigeria. CPV-2c is now predominantly in Nigeria and as such with so many countries of the world, without corresponding vaccines with the variants. Hence understanding the antigenic variants of CPV-2 virus circulating within a geographical area is very essential in controlling the infection. Conclusion: CPE infection is endemic in Nigeria and mainly infects dogs less than six months of age. The disease is of serious socio-economic importance to dog owners and breeders, as a number one killer disease of dogs. The three stains of the canine parvovirus type 2, (2a, 2b and 2c) exists in Nigeria, with predominantly 2c. The current vaccines mainly used in Nigeria are original CPV-2, 2a or 2b, and do not protect dogs against CPE due to 2c infections. We therefore, recommend that 2c be incorporated in CPV-2 vaccines presently used in Nigeria


2021 ◽  
Author(s):  
Karthik Murugadoss ◽  
Michiel JM Niesen ◽  
Bharathwaj Raghunathan ◽  
Patrick J Lenehan ◽  
Pritha Ghosh ◽  
...  

Highly transmissible or immuno-evasive SARS-CoV-2 variants have intermittently emerged and outcompeted previously circulating strains, resulting in repeated COVID-19 surges, reinfections, and breakthrough infections in vaccinated individuals. With over 5 million SARS-CoV-2 genomes sequenced globally over the last 2 years, there is unprecedented data to decipher how competitive viral evolution results in the emergence of fitter SARS-CoV-2 variants. Much attention has been directed to studying how specific mutations in the Spike protein impact its binding to the ACE2 receptor or viral neutralization by antibodies, but there is limited knowledge of genomic signatures shared primarily by dominant variants. Here we introduce a methodology to quantify the genome-wide distinctiveness of polynucleotide fragments of various lengths (3- to 240-mers) that constitute SARS-CoV-2 lineage genomes. Compared to standard phylogenetic distance metrics and overall mutational load, the quantification of distinctive 9-mer polynucleotides provides a higher resolution of separation between variants of concern (Reference = 89, IQR: 65-108; Alpha = 166, IQR: 150-182; Beta 130, IQR: 113-147; Gamma = 165, IQR: 152-180; Delta = 234, IQR: 216-253; and Omicron = 294, IQR: 287-315). The similar scoring of the Alpha and Gamma variants by our methodology is consistent with these strains emerging at approximately the same time and circulating in distinct geographical regions as dominant strains. Furthermore, evaluation of genomic distinctiveness for 1,363 lineages annotated in GISAID highlights that polynucleotide diversity has increased over time (R2 = 0.37) and that VOCs show high distinctiveness compared to non-VOC contemporary lineages. To facilitate similar real-time assessments on the competitive fitness potential of future variants, we are launching a freely accessible resource for infusing pandemic preparedness with genomic inference ("GENI" — https://academia.nferx.com/GENI). This study demonstrates the value of characterizing new SARS-CoV-2 variants by their genome-wide polynucleotide distinctiveness and emphasizes the need to go beyond a narrow set of mutations at known functionally salient sites.


Sign in / Sign up

Export Citation Format

Share Document