scholarly journals Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

PLoS ONE ◽  
2009 ◽  
Vol 4 (8) ◽  
pp. e6706 ◽  
Author(s):  
Sasan R. Fereidouni ◽  
Elke Starick ◽  
Martin Beer ◽  
Hendrik Wilking ◽  
Donata Kalthoff ◽  
...  
2019 ◽  
Vol 7 ◽  
pp. 251513551882162 ◽  
Author(s):  
Ivette A. Nuñez ◽  
Ted M. Ross

Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.


2014 ◽  
Vol 19 (50) ◽  
Author(s):  
C Adlhoch ◽  
C Gossner ◽  
G Koch ◽  
I Brown ◽  
R Bouwstra ◽  
...  

Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.


Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections with the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threatens public health. The susceptibility of HPAIVs to baloxavir acid (BXA), which is a new class of inhibitor for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but has not yet been characterized fully. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants in vitro was assessed. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested to those of seasonal and other zoonotic strains. BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate; A/Hong Kong/483/1997 (H5N1) strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, followed by prevention of acute lung inflammation and improvement of mortality compared with oseltamivir phosphate (OSP). Furthermore, combination treatments with BXM and OSP, using a 48-hour delayed treatment model showed a more potent effect on viral replication in organs, accompanied by improved survival compared to BXM or OSP monotherapy. From each test, no resistant virus (e.g., I38T in the PA) emerged in any BXM-treated mouse. These results therefore support the conclusion that BXM has potent antiviral efficacy against H5 HPAIV infections.


Author(s):  
V. Yu. Marchenko ◽  
N. I. Goncharova ◽  
Thi Nhai Tran ◽  
Khac Sau Trinh ◽  
Ngoc Quyen Nguyen ◽  
...  

This review describes the current situation on highly pathogenic avian influenza virus in 2019 and predicts the possible further spread of avian influenza in Russia. In 2019 outbreaks were reported among wild birds and poultry, as well as human infections with influenza viruses of the subtypes H5Nx, H7N9 and H9N2 in several countries. In 2019, only two outbreaks of highly pathogenic avian influenza H5N8 in Russia occurred. Both outbreaks were recorded in January at poultry farm in the Rostov Region. In addition, in May 2019 avian influenza virus of H14N7 subtype was isolated from a wild bird during the avian influenza virus surveillance in Tomsk Region. In June 2019, a strain of H13N2 subtype was isolated in the territory of Kamchatka Region, then, in August 2019, an influenza virus of H13N6 subtype was isolated in the Saratov Region. It was revealed that some strains of avian influenza virus isolated in Russia have a high degree of identity with strains circulating in South-East Asia. This was shown by the phylogenetic analysis of A/ H5Nx influenza viruses previously isolated in the Saratov Region and the Socialist Republic of Vietnam during the avian influenza virus surveillance. Thus, it was demonstrated again that the territory of Russia plays a key geographical role in the global spread of avian influenza virus.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 591
Author(s):  
Yunyueng Jang ◽  
Sang Heui Seo

Ducks show notably higher resistance to highly pathogenic avian influenza viruses as compared to chickens. Here, we studied the age-dependent susceptibility in ducks to the infections caused by highly pathogenic avian influenza viruses. We intranasally infected ducks aged 1, 2, 4, and 8 weeks with highly pathogenic H5N6 avian influenza viruses isolated in South Korea in 2016. All the 1-and 2-week-old ducks died after infection, 20% of 3-week-old ducks died, and from the ducks aged 4 and 8 weeks, all of them survived. We performed microarray analysis and quantitative real-time PCR using total RNA isolated from the lungs of infected 2- and 4-week-old ducks to determine the mechanism underlying the age-dependent susceptibility to highly pathogenic avian influenza virus. Limited genes were found to be differentially expressed between the lungs of 2- and 4-week-old ducks. Cell damage-related genes, such as CIDEA and ND2, and the immune response-related gene NR4A3 were notably induced in the lungs of infected 2-week-old ducks compared to those in the lungs of infected 4-week-old ducks.


2011 ◽  
Vol 17 (4) ◽  
pp. 714-717 ◽  
Author(s):  
Taisuke Horimoto ◽  
Ken Maeda ◽  
Shin Murakami ◽  
Maki Kiso ◽  
Kiyoko Iwatsuki-Horimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document