scholarly journals Diagnostic performance and clinical implications for enhancing a hybrid quantitative flow ratio–FFR revascularization decision-making strategy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joyce Peper ◽  
Robbert W. van Hamersvelt ◽  
Benno J. W. M. Rensing ◽  
Jan-Peter van Kuijk ◽  
Michiel Voskuil ◽  
...  

AbstractInvasive fractional flow reserve (FFR) adoption remains low mainly due to procedural and operator related factors as well as costs. Alternatively, quantitative flow ratio (QFR) achieves a high accuracy mainly outside the intermediate zone without the need for hyperaemia and wire-use. We aimed to determine the diagnostic performance of QFR and to evaluate a QFR–FFR hybrid strategy in which FFR is measured only in the intermediate zone. This retrospective study included 289 consecutive patients who underwent invasive coronary angiography and FFR. QFR was calculated for all vessels in which FFR was measured. The QFR–FFR hybrid approach was modelled using the intermediate zone of 0.77–0.87 in which FFR-measurements are recommended. The sensitivity, specificity, and accuracy on a per vessel-based analysis were 84.6%, 86.3% and 85.6% for QFR and 88.0%, 92.9% and 90.3% for the QFR–FFR hybrid approach. The diagnostic accuracy of QFR–FFR hybrid strategy with invasive FFR measurement was 93.4% and resulted in a 56.7% reduction in the need for FFR. QFR has a good correlation and agreement with invasive FFR. A hybrid QFR–FFR approach could extend the use of QFR and reduces the proportion of invasive FFR-measurements needed while improving accuracy.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Peper ◽  
R.W Van Hamersvelt ◽  
B.J.M.W Rensing ◽  
J.P Van Kuijk ◽  
M Voskuil ◽  
...  

Abstract Background Fractional flow reserve (FFR) adoption persists low mainly due to procedural and operator related factors as well as costs. An alternative for FFR, quantitative flow ratio (QFR) achieves a high accuracy mainly outside the intermediate zone without the need for hyperemia and wire-use. Currently, no outcome trials assess the role of QFR in the guidance of revascularization. Therefore, we evaluate a QFR-FFR hybrid strategy in which FFR is measured inside of the intermediate zone. Methods This retrospective multi-center study included consecutive patients who underwent both invasive coronary angiography and FFR in the participating centers. QFR was calculated for all vessels in which FFR was measured. Diagnostic performance of QFR was assessed using an FFR cut-off of 0.80 as reference standard. The QFR-FFR hybrid approach was modeled using the intermediate zone of 0.77 to 0.87 assuming that lesions within the intermediate zone follow the FFR binary cutoff. Results In total, 381 vessels in 289 patients were analyzed. The sensitivity, specificity and accuracy on a per vessel-based analysis were 84.6%, 86.3% and 85.6% for QFR and 91.1%, 95.3% and 93.4% for the QFR-FFR hybrid approach. The diagnostic accuracy of QFR-FFR hybrid strategy with invasive FFR measurement is 93.4% and results in a FFR reduction of 56.7%. Conclusion QFR has a good correlation and agreement with invasive FFR and a high diagnostic accuracy. A hybrid QFR-FFR approach could extend the use of QFR and reduces the proportion of invasive FFR-measurements needed while maintaining a high accuracy. Hybrid QFR-FFR strategy Funding Acknowledgement Type of funding source: None


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruitao Zhang ◽  
Jianwei Zhang ◽  
Lijun Guo

Background. Use of the fractional flow reserve (FFR) technique is recommended to evaluate coronary stenosis severity and guide revascularization. However, its high cost, time to administer, and the side effects of adenosine reduce its clinical utility. Two novel adenosine-free indices, contrast-FFR (cFFR) and quantitative flow ratio (QFR), can simplify the functional evaluation of coronary stenosis. This study aimed to analyze the diagnostic performance of cFFR and QFR using FFR as a reference index. Methods. We conducted a systematic review and meta-analysis of observational studies in which cFFR or QFR was compared to FFR. A bivariate model was applied to pool diagnostic parameters. Cochran’s Q test and the I2 index were used to assess heterogeneity and identify the potential source of heterogeneity by metaregression and sensitivity analysis. Results. Overall, 2220 and 3000 coronary lesions from 20 studies were evaluated by cFFR and QFR, respectively. The pooled sensitivity and specificity were 0.87 (95% CI: 0.81, 0.91) and 0.92 (95% CI: 0.88, 0.94) for cFFR and 0.87 (95% CI: 0.82, 0.91) and 0.91 (95% CI: 0.87, 0.93) for QFR, respectively. No statistical significance of sensitivity and specificity for cFFR and QFR were observed in the bivariate analysis (P=0.8406 and 0.4397, resp.). The area under summary receiver-operating curve of cFFR and QFR was 0.95 (95% CI: 0.93, 0.97) for cFFR and 0.95 (95% CI: 0.93, 0.97). Conclusion. Both cFFR and QFR have good diagnostic performance in detecting functional severity of coronary arteries and showed similar diagnostic parameters.


2018 ◽  
Vol 20 (11) ◽  
pp. 1231-1238 ◽  
Author(s):  
Jeff M Smit ◽  
Gerhard Koning ◽  
Alexander R van Rosendael ◽  
Mohammed El Mahdiui ◽  
Bart J Mertens ◽  
...  

Abstract Aims Quantitative flow ratio (QFR) is a recently developed technique to calculate fractional flow reserve (FFR) based on 3D quantitative coronary angiography and computational fluid dynamics, obviating the need for a pressure-wire and hyperaemia induction. QFR might be used to guide patient selection for FFR and subsequent percutaneous coronary intervention (PCI) referral in hospitals not capable to perform FFR and PCI. We aimed to investigate the feasibility to use QFR to appropriately select patients for FFR referral. Methods and results Patients who underwent invasive coronary angiography in a hospital where FFR and PCI could not be performed and were referred to our hospital for invasive FFR measurement, were included. Angiogram images from the referring hospitals were retrospectively collected for QFR analysis. Based on QFR cut-off values of 0.77 and 0.86, our patient cohort was reclassified to ‘no referral’ (QFR ≥0.86), referral for ‘FFR’ (QFR 0.78–0.85), or ‘direct PCI’ (QFR ≤0.77). In total, 290 patients were included. Overall accuracy of QFR to detect an invasive FFR of ≤0.80 was 86%. Based on a QFR cut-off value of 0.86, a 50% reduction in patient referral for FFR could be obtained, while only 5% of these patients had an invasive FFR of ≤0.80 (thus, these patients were incorrectly reclassified to the ‘no referral’ group). Furthermore, 22% of the patients that still need to be referred could undergo direct PCI, based on a QFR cut-off value of 0.77. Conclusion QFR is feasible to use for the selection of patients for FFR referral.


2021 ◽  
Author(s):  
Zhengwei Li ◽  
Jiachen Zhan ◽  
Jia Han ◽  
Guosheng Fu ◽  
Chongying Jin

Abstract Quantitative flow ratio (QFR) is a novel angiography derived fractional flow reserve (FFR). However, its diagnostic performance has only be validated in native coronary lesion but not yet in vessels after stent implantation. This study aims to evaluate the diagnostic performance of QFR in coronary vessels immediately after everolimus eluting stent (EES) and bioresorbable scaffold (BRS) implantation. This is a retrospective, two centers, validation cohort study. 73 stable angina patients who received at least one native vessel EES/BRS implantation with immediate FFR assessment were screened. Cases with aorta-ostial stenoses, bridge vessel at the distal of targated vessel, acute coronary syndrome, previous coronary artery bypass grafting, age < 18 years, lack of ≥ 2 final angiographic projections were excluded. Contrast QFR assessment was performed blinded to FFR assessment. A good correlation (r = 0.680, p < 0.001) was found between QFR and FFR. In the EES implantation cohort, a good correlation (r = 0.769, p < 0.001) was found between QFR and FFR, while moderate correlation (r = 0.446, p = 0.038) was found in the BRS cohort. The area under the ROC curve for detecting FFR ≤ 0.86 was 0.883 for the total subjects. QFR assessment after immediate EES/BRS implantation is feasible, and remains good correlation and agreement with FFR. QFR might be a promising tool for guiding stent implantation optimizing to improve clinical outcomes.


2021 ◽  
Vol 25 (56) ◽  
pp. 1-230
Author(s):  
Ana Duarte ◽  
Alexis Llewellyn ◽  
Ruth Walker ◽  
Laetitia Schmitt ◽  
Kath Wright ◽  
...  

Background QAngio® XA 3D/QFR® (three-dimensional/quantitative flow ratio) imaging software (Medis Medical Imaging Systems BV, Leiden, the Netherlands) and CAAS® vFFR® (vessel fractional flow reserve) imaging software (Pie Medical Imaging BV, Maastricht, the Netherlands) are non-invasive technologies to assess the functional significance of coronary stenoses, which can be alternatives to invasive fractional flow reserve assessment. Objectives The objectives were to determine the clinical effectiveness and cost-effectiveness of QAngio XA 3D/QFR and CAAS vFFR. Methods We performed a systematic review of all evidence on QAngio XA 3D/QFR and CAAS vFFR, including diagnostic accuracy, clinical effectiveness, implementation and economic analyses. We searched MEDLINE and other databases to January 2020 for studies where either technology was used and compared with fractional flow reserve in patients with intermediate stenosis. The risk of bias was assessed with quality assessment of diagnostic accuracy studies. Meta-analyses of diagnostic accuracy were performed. Clinical and implementation outcomes were synthesised narratively. A simulation study investigated the clinical impact of using QAngio XA 3D/QFR. We developed a de novo decision-analytic model to estimate the cost-effectiveness of QAngio XA 3D/QFR and CAAS vFFR relative to invasive fractional flow reserve or invasive coronary angiography alone. Scenario analyses were undertaken to explore the robustness of the results to variation in the sources of data used to populate the model and alternative assumptions. Results Thirty-nine studies (5440 patients) of QAngio XA 3D/QFR and three studies (500 patients) of CAAS vFFR were included. QAngio XA 3D/QFR had good diagnostic accuracy to predict functionally significant fractional flow reserve (≤ 0.80 cut-off point); contrast-flow quantitative flow ratio had a sensitivity of 85% (95% confidence interval 78% to 90%) and a specificity of 91% (95% confidence interval 85% to 95%). A total of 95% of quantitative flow ratio measurements were within 0.14 of the fractional flow reserve. Data on the diagnostic accuracy of CAAS vFFR were limited and a full meta-analysis was not feasible. There were very few data on clinical and implementation outcomes. The simulation found that quantitative flow ratio slightly increased the revascularisation rate when compared with fractional flow reserve, from 40.2% to 42.0%. Quantitative flow ratio and fractional flow reserve resulted in similar numbers of subsequent coronary events. The base-case cost-effectiveness results showed that the test strategy with the highest net benefit was invasive coronary angiography with confirmatory fractional flow reserve. The next best strategies were QAngio XA 3D/QFR and CAAS vFFR (without fractional flow reserve). However, the difference in net benefit between this best strategy and the next best was small, ranging from 0.007 to 0.012 quality-adjusted life-years (or equivalently £140–240) per patient diagnosed at a cost-effectiveness threshold of £20,000 per quality-adjusted life-year. Limitations Diagnostic accuracy evidence on CAAS vFFR, and evidence on the clinical impact of QAngio XA 3D/QFR, were limited. Conclusions Quantitative flow ratio as measured by QAngio XA 3D/QFR has good agreement and diagnostic accuracy compared with fractional flow reserve and is preferable to standard invasive coronary angiography alone. It appears to have very similar cost-effectiveness to fractional flow reserve and, therefore, pending further evidence on general clinical benefits and specific subgroups, could be a reasonable alternative. The clinical effectiveness and cost-effectiveness of CAAS vFFR are uncertain. Randomised controlled trial evidence evaluating the effect of quantitative flow ratio on clinical and patient-centred outcomes is needed. Future work Studies are required to assess the diagnostic accuracy and clinical feasibility of CAAS vFFR. Large ongoing randomised trials will hopefully inform the clinical value of QAngio XA 3D/QFR. Study registration This study is registered as PROSPERO CRD42019154575. Funding This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in Health Technology Assessment; Vol. 25, No. 56. See the NIHR Journals Library website for further project information.


2020 ◽  
Vol 14 ◽  
Author(s):  
Jelmer Westra ◽  
Shengxian Tu

Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) improves clinical outcome compared with angiography-guided PCI. Advances in computational technology have resulted in the development of solutions, enabling fast derivation of FFR from imaging data in the catheterization laboratory. The quantitative flow ratio is currently the most validated approach to derive FFR from invasive coronary angiography, while the optical flow ratio allows faster and more automation in FFR computation from intracoronary optical coherence tomography. The use of quantitative flow ratio and optical flow ratio has the potential for swift and safe identification of lesions that require revascularization, optimization of PCI, evaluation of plaque features, and virtual planning of PCI.


Sign in / Sign up

Export Citation Format

Share Document